The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode–buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV–vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1–256 ng/mL. An R 2 of 0.97 with an output signal range of 20–50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
Misclassification of an acute disease condition as chronic and vice versa by electrochemical sweat biomarker sensors can cause significant psychological, emotional, and financial stress among patients. To achieve higher accuracy in distinguishing between a chronic condition and an acute condition, there is a need to establish a reference biomarker to index the actual chronic disease biomarker of interest by combinatorial sensing. This work provides the first technological proof of leveraging the chloride ion content in sweat for a combinatorial sweat biomarker benchmarking scheme. In this scheme, the sweat chloride ion has been demonstrated as the reference/indexing biomarker, while sweat cortisol has been studied as the disease biomarker of interest. Label-free affinity biosensing is achieved by using a two-electrode electrochemical system on a flexible substrate suitable for wearable applications. The electrochemical stability of the fabricated electrodes for biosensing applications was studied by open-circuit potential measurements. Attenuated total reflectance–Fourier transform infrared spectroscopy spectra validate the crosslinker–antibody binding chemistry. Concentration-dependent analyte–capture probe binding induces a modulation in the electrical properties (charge transfer resistance and double-layer capacitance) at the electrode–sweat buffer interface, which are transduced by nonfaradaic electrochemical impedance spectroscopy (EIS). Calibration dose responses for the sensor for cortisol (5–200 ng/mL) and chloride (10–100 mM) detection were evaluated in synthetic (pH 6) and pooled human sweat ( R2 > 0.95). The variation in the cortisol sensor response due to fluctuations in sweat chloride levels and the significance of reporting normalized biomarker levels were demonstrated to further emphasize the need for biomarker benchmarking in electrochemical sensors.
This work demonstrates a novel electrochemical biosensor for the detection of chloride ion levels in ultra-low volumes (1–3 microliters) of passively expressed human sweat. We present here a hydration monitor that the pediatric, geriatric, and other immune-compromised or physically inactive/sedentary population cohort can utilize, for whom the current methods of chloride quantification of active stimulation of sweat glands through iontophoresis or treadmill runs are unsuitable. In this work, non-faradaic electroanalysis using gold microelectrodes deposited on a flexible nanoporous substrate, for high nanoscale surface area to volume enhancement, was leveraged to operate in ultra-low sweat volumes of <3 µL eluted at natural rates. The specific chloride ionophore-based affinity of chloride ions resulted in the modulation of charge transfer within the electrical double layer at the electrode–sweat buffer interface, which was transduced using electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Linear calibration dose responses with R-squared values of 0.9746 and 0.9403 for EIS and CA respectively were obtained for a dynamic range of 10–100 mM. The surface charge and the binding chemistry of the capture probe were studied using zeta potential studies and UV-Vis. The dynamic sweat chloride-tracking capability of the sensor was evaluated for a duration of 180 min. Studies were conducted to probe the efficacy of the developed sensor for passive ultra-low sweat chloride assessment on human subjects (n = 3).
This article discusses the emergent biosensor technology focused on continuous biosensing of metabolites by non-invasive sampling of body fluids emphasized on physiological monitoring in mobility-constrained populations, resource-challenged settings, and harsh environments. The boom of innovative ideas and endless opportunities in healthcare technologies has transformed traditional medicine into a sustainable link between medical practitioners and patients to provide solutions for faster disease diagnosis. The future of healthcare is focused on empowering users to manage their own health. The confluence of big data and predictive analysis and the internet of things (IoT) technology have shown the potential of converting the abundant health profile data amassed from medical diagnosis of patients into useable information, whilst allowing caregivers to provide suitable treatment plans. The implementation of the IoT technology has opened up advanced approaches in real-time, continuous, remote monitoring of patients. Wearable, point-of-care biosensors are the future roadmap to providing direct, real-time information of health status to the user and medical professionals in this digitized era.
A label-free, rapid, and easy-to-use lateral flow electrochemical biosensor was developed for urinary tract infection (UTI) diagnosis in resource challenged areas. The sensor operates in non-faradaic mode and utilizes Electrochemical Impedance Spectroscopy for quantification of Prostaglandin E2, a diagnostic and prognostic urinary biomarker for UTI and recurrent UTI. To achieve high sensitivity in low microliter volumes of neat, unprocessed urine, nanoconfinement of assay biomolecules was achieved by developing a three-electrode planar gold microelectrode system on top of a lateral flow nanoporous membrane. The sensor is capable of giving readouts within 5 min and has a wide dynamic range of 100–4000 pg/mL for urinary PGE2. The sensor is capable of discriminating between low and high levels of PGE2 and hence is capable of threshold classification of urine samples as UTI positive and UTI negative. The sensor through its immunological response (directly related to host immune response) is superior to the commercially available point-of-care UTI dipsticks which are qualitative, have poor specificity for UTI, and have high false-positive rates. The developed sensor shows promise for rapid, easy and cost-effective UTI diagnosis for both clinical and home-based settings. More accurate point-of-care UTI diagnosis will improve patient outcomes and allow for timely and appropriate prescription of antibiotics which can subsequently increase treatment success rates and reduce costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.