The relations between the patterns of discontinuous gas exchange cycles (DGCs) and water loss were investigated in nonchilled diapausing pupae of the white cabbage butterfly Pieris brassicae kept at room temperature (22-24°C) in Petri dishes. An electrolytic respirometer, combined with an infrared (IR) actographic device was used for the simultaneous recordings of metabolic rate, cyclic release of carbon dioxide (bursts), passive suction inspirations (PSIs) and body movements. The patterns of cyclic gas exchange in four-and five-month-old non-chilled diapausing pupae varied individually to a considerable extent. About 40% of the pupae displayed long DGCs lasting 1-3 h, while the interburst periods were characterised by rare and almost regular large PSIs succeeding at intervals of 1-4 min. Nearly 30% of the pupae exhibited short DGCs lasting 3-5 min, while between the bursts there occurred unclear frequent gas exchange microcycles. Standard metabolic rate (SMR) did not reveal significant differences between long DGCs and short DGCs ranging from 32-56 (mean 47.6 ± 4.6) ml O2 g-1 h-1 , and 28-61 (mean 44.95 ± 5.3) ml O2 g-1 h-1 , respectively. The mentioned levels of SMR were characteristic of diapausing pupae. Water loss in pupae with long DGCs was determined gravimetrically to be 0.29 ± 0.1 mg g-1 day 1. At the same time, water loss in pupae that showed only short DGCs and irregular microcycles was 1.73 ± 0.31 mg g-1 day-1 , which was significantly higher than in individuals characterised by long DGCs. We suggest that water loss in the non-chilled diapausing pupae may depend significantly on the patterns of cyclic gas exchange: long cycles and rare but deep PSIs exerted a marked water conserving effect.
-Discontinuous release of CO 2 (bursts) or discontinuous gas exchange cycles (DGC), metabolic rate (MR) and ventilation movements were simultaneously recorded from the pupae of the bumblebee Bombus terrestris by means of an electrolytic respirometer and an infrared gas analyser (IRGA) combined with an infrared actograph (IRA). After recovering from stress, the early stage pupae showed irregular continuous respiration, mid-stage pupae displayed regular DGC. The bursts of CO 2 release tended to coincide with abdominal contractions. In late stage pupae all bursts of CO 2 were associated with active ventilation. During interburst periods, spikes appeared on the respirograms interpreted as micro-cycles of passive suction ventilation (PSV). After removal from their cocoons, the pupae exhibited frequent periods of muscular activity due to stress. Water loss of pupae inside cocoons was significantly less than that from pupae without cocoons.
Bombus terrestris L. / passive suction ventilation / standard metabolic rate / respirometry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.