We consider causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system’s causal structure if not properly taken into account. In this paper, we first consider the search for system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. We then apply the method to real-world data, investigate the robustness and scalability of our method, consider further approaches to reduce underdetermination in the output, and perform an extensive comparison between different solvers on this inference problem. Overall, these advances build towards a full understanding of non-parametric estimation of system timescale causal structures from sub-sampled time series data.
Directed acyclic graphs (DAGs) constitute a qualitative representation for conditional independence (CI) properties of a probability distribution. It is known that every CI statement implied by the topology of a DAG is witnessed over it under a graph-theoretic criterion of d-separation. Alternatively, all such implied CI statements are derivable from the local independencies encoded by a DAG using the so-called semi-graphoid axioms. We consider Labeled Directed Acyclic Graphs (LDAGs) modeling graphically scenarios exhibiting context-specific independence (CSI). Such CSI statements are modeled by labeled edges, where labels encode contexts in which the edge vanishes. We study the problem of identifying all independence statements implied by the structure and the labels of an LDAG. We show that this problem is coNP-hard for LDAGs and formulate a sound extension of the semi-graphoid axioms for the derivation of such implied independencies. Finally we connect our study to certain qualitative versions of independence ubiquitous in database theory and teams semantics.
Discovery of causal relations is an important part of data analysis. Recent exact Boolean optimization approaches enable tackling very general search spaces of causal graphs with feedback cycles and latent confounders, simultaneously obtaining high accuracy by optimally combining conflicting independence information in sample data. We propose several domain-specific techniques and integrate them into a core-guided maximum satisfiability solver, thereby speeding up current state of the art in exact search for causal graphs with cycles and latent confounders on simulated and real-world data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.