Due to rapidly changing physical and biochemical characteristics of growing leaves, correlations between traits of foliage biochemistry and the performance indices of flush feeding herbivores may vary considerably following relatively minor changes in experimental conditions. We examined the effects of the seasonal and inter-tree variation of a comprehensive array of biochemical compounds on the success of an early season geometrid, Epirrita autumnata, feeding on maturing foliage of mountain birch, Betula pubescens ssp. czerepanovii. We monitored the concentrations of individual phenolics, sugars, total nitrogen, nitrogen of proteins, and nitrogen of soluble compounds, water and acetone-insoluble residue. Simultaneously we recorded larval consumption, physiological performance, growth, and pupal mass of E. autumnata. We found significant phenological changes in almost all leaf traits measured. In bioassays with half-grown leaves, leaf gallotannin concentrations showed a nonlinear effect: in trees with high foliar gallotannin concentrations (over 10 mg g), physiological performance was strongly reduced by high gallotannin concentrations. In trees with lower gallotannin concentrations, on the other hand, larval growth was reduced by soluble proanthocyanidins, not gallotannins. Differences between high and low gallotannin trees largely depended on phenology, i.e., on the age of leaves. However, not all the differences in leaf traits between late (with high gallotannin concentrations at the time of the bioassay) and early flushing trees disappeared with leaf maturation, indicating that there is also phenology-independent variance in the tree population. In the full-grown leaves of all the study trees, low concentrations of water and of nitrogen of proteins (but not nitrogen of soluble compounds) were the main factors reducing pupal masses of E. autumnata, while neither gallotannin nor proanthocyanidins now played a significant role. The observed change in the factors underlying leaf quality (from gallotannins and proanthocyanidins to nitrogen and water) relate to the activity of the shikimate pathway and the formation of cell walls: gallotannins and proanthocyanidins are both produced in the pathway, and these tannins are assumed to contribute - via binding into cell walls - to tough and durable cell walls. Interestingly, low quality of leaves did not automatically translate into low foliar consumption (i.e., benefits to the tree). On the trees with young, high gallotannin leaves, larvae actually increased consumption on low quality foliage. In the group of trees with slightly more developed, low gallotannin leaves, the quality of leaves did not clearly modify amounts consumed. In full-grown leaves, low leaf quality strongly reduced leaf consumption. These results emphasize the strong influence of tree phenology on the relationships between biochemical compounds and the herbivore.
Generating breeding programmes that effectively improve farmed fish performance across multiple environments and make fish more uniform within production environments would aid farmers to produce food under diverse environments. We review genotype-by-environment interaction leading to re-ranking of genotypes across environments, that is non-unity genetic correlation between traits measured in different environments, and micro-environmental sensitivity leading to a change in environmental variance of a trait. A quantitative review across 38 species showed that (i) genotype-by-environment interaction studies are lacking for many economically important traits. (ii) Re-ranking is moderate for growth (average genetic correlation = 0.72) and survival (average genetic correlation = 0.54). Significant re-ranking is of concern because selection in a nucleus leads to lower genetic responses in commercial environments compared to a case when re-ranking does not exist. (iii) Re-ranking is weak for age-at-sexual-maturity and fish appearance (average genetic correlation = 0.86), implying that genetic improvement in one environment is expected to be effective in the other environments. Future research should provide guidelines for how to account for genotype-by-environment interaction when collecting data, estimating breeding values and optimising the structure of the breeding programme. (iv) Coefficient of genetic variation for sensitivity against unknown micro-environmental factors within a single environment for body weight is high. Hence, genetic improvement towards less sensitive fish, resulting in more uniform production, is possible, but a large number of relatives with phenotypes is needed for obtaining moderate accuracy of selection. This review elucidates needs for further research on genotype-by-environment interaction and micro-environmental sensitivity in economically important traits and species.
SummaryTolerance to infections is the ability of a host to limit the impact of a given pathogen burden on host performance. This simulation study demonstrated the merit of using random regressions to estimate unbiased genetic variances for tolerance slope and its genetic correlations with other traits, which could not be obtained using the previously implemented statistical methods. Genetic variance in tolerance was estimated as genetic variance in regression slopes of host performance along an increasing pathogen burden level. Random regressions combined with covariance functions allowed genetic variance for host performance to be estimated at any point along the pathogen burden trajectory, providing a novel means to analyse infection-induced changes in genetic variation of host performance. Yet, the results implied that decreasing family size as well as a non-zero environmental or genetic correlation between initial host performance before infection and pathogen burden led to biased estimates for tolerance genetic variance. In both cases, genetic correlation between tolerance slope and host performance in a pathogen-free environment became artificially negative, implying a genetic trade-off when it did not exist. Moreover, recording a normally distributed pathogen burden as a threshold trait is not a realistic way of obtaining unbiased estimates for tolerance genetic variance. The results show that random regressions are suitable for the genetic analysis of tolerance, given suitable data structure collected either under field or experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.