The main objective of this paper is to present major challenges regarding the fifth generation (5G) mobile communications propagation modelling work in the European 7th framework project METIS (Mobile and wireless communications Enablers for the Twenty-twenty Information Society). The goal of the propagation work in METIS is to provide adequate propagation models for 5G. For this purpose corresponding deficiencies of present commonly used models are identified. Further, the lack of available channel models for several propagation scenarios has been assessed. Based on this assessment the framework of 5G channel modelling is sketched. As propagation measurement campaigns are a crucial part of this work they are illustrated with a few examples
This article first identifies requirements of 5G radio propagation models for relevant propagation scenarios and link types derived from the analysis of recently discussed 5G visions and respective 5G technology trends. A literature survey reveals that none of the state-of-the-art propagation models such as WINNER/IMT-Advanced, COST 2100, and IEEE 802.11 fully satisfies the model requirements without significant extensions, and therefore there is room for a new framework of propagation models. We then present a novel map-based propagation model that satisfies the model requirements, and also introduce new extensions to existing stochastic models. Several open issues are finally identified that require further studies in 5G propagation modeling
Abstract. 5G brings along very dense small cell deployments in specific locations such as hospitals, campuses, shopping malls, and factories. This will result in a novel 5G deployment scenario where different stakeholders, i.e., micro operators, are issued local spectrum access rights in the form of micro licenses, to deploy networks in the specific premises. This new form of sharing-based micro licensing guarantees that the local 5G networks remain free from harmful interference from each other and also protects potential incumbent spectrum users' rights. It admits a larger number of stakeholders to gain access to the 5G spectrum to serve different vertical sectors' needs beyond traditional mobile network operators (MNO) improving the competition landscape. We characterize the resulting interference scenarios between the different micro operators' deployments and focus on the building-to-building scenario where two micro operators hold micro licenses in separate buildings in co-channel and adjacent channel cases. We analyze the resulting allowable transmit power levels of a base station from inside one building towards an end user mobile terminal inside another building as a function of the minimum separation distance between the two micro operator networks. Numerical results are provided for the example case of the 3.5 GHz band with different building entry losses characterizing the impact of propagation characteristics on the resulting interference levels. The results indicate that the building entry losses strongly influence the interference levels and resulting required minimum separation distances, which calls for flexibility in determining the micro license conditions for the building specific situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.