BackgroundIn targeted radionuclide therapy (TRT), accurate quantification using SPECT/CT images is important for optimizing radiation dose delivered to both the tumour and healthy tissue. Quantitative SPECT images are regularly reconstructed using the ordered subset expectation maximization (OSEM) algorithm with various compensation methods such as attenuation (A), scatter (S) and detector and collimator response (R). In this study, different combinations of the compensation methods are applied during OSEM reconstruction and the effect on the 177Lu quantification accuracy is studied in an anthropomorphic torso phantom. In addition, the phantom results are reflected to (177)Lu-DOTA-Tyr3-octreotate (177Lu-DOTATATE)-treated patient data and kidney absorbed dose estimates.MethodsThe torso phantom was imaged with nine various sized (0.4–104.4 cm3) spherical inserts, filled with known 177Lu activity ranging from 0.5 to 105.5 MBq. Images were reconstructed using OSEM algorithm using A, AR and ARS compensation method combinations. The compensation method combinations were compared by calculating the concentration recovery coefficient (cRC) for each insert. In addition, ten 177Lu-DOTATATE-treated patient’s post-therapy dosimetry acquisitions were reconstructed, and the absorbed dose to kidneys was estimated.ResultscRC values depend on the insert size for all compensation methods. AR and ARS produced significantly higher cRC values than attenuation correction alone. There were no cRC value differences between the methods for the smallest 1-cm-diameter insert, cRC being 0.18. However, the collimator and detector response compensation method (R) made the 1.3-cm-diameter insert clearly visible and improved cRC estimate from 0.19 to 0.43. ARS produced slightly higher cRC values for small- and medium-sized inserts than AR. On the patient data, a similar trend could be seen. AR and ARS produced higher kidney activities than using attenuation correction alone; the total absorbed doses to the right and left kidneys were on average 15 and 20 % higher for AR and 19 and 25 % higher for ARS, respectively. The effective half-life decay estimated from time-activity curves however showed no notable difference between the compensation methods.ConclusionsThe highest cRC values were achieved by applying ARS compensation during reconstruction. The results were notably higher than those using attenuation correction alone. Similarly, higher activity estimates and thus higher absorbed dose estimates were found in patient data when all compensation methods were applied. ARS improved cRC especially in small-sized sources, and it thus might aid tumour dosimetry for 177Lu PRRT treatments.
Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling (99m)Tc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.
Absolute quantitation of regional MBF, for a wide physiological flow range, appears to be feasible using 201Tl and dynamic SPECT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.