Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia.Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making.A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods.The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.
ObjectiveTo assess whether standardized handwriting can provide quantitative measures to distinguish patients diagnosed with Parkinson's disease from age- and gender-matched healthy control participants.DesignExploratory study. Pen tip trajectories were recorded during circle, spiral and line drawing and repeated character ‘elelelel’ and sentence writing, performed by Parkinson patients and healthy control participants. Parkinson patients were tested after overnight withdrawal of anti-Parkinsonian medication.SettingUniversity Medical Center Groningen, tertiary care, the Netherlands.ParticipantsPatients with Parkinson's disease (n = 10; mean age 69.0 years; 6 male) and healthy controls (n = 10; mean age 68.1 years; 6 male).InterventionsNot applicable.Main Outcome MeasuresMovement time and velocity to detect bradykinesia and the size of writing to detect micrographia. A rest recording to investigate the presence of a rest-tremor, by frequency analysis.ResultsMean disease duration in the Parkinson group was 4.4 years and the patients were in modified Hoehn-Yahr stages 1–2.5. In general, Parkinson patients were slower than healthy control participants. Median time per repetition, median velocity and median acceleration of the sentence task and median velocity of the elel task differed significantly between Parkinson patients and healthy control participants (all p<0.0014). Parkinson patients also wrote smaller than healthy control participants and the width of the ‘e’ in the elel task was significantly smaller in Parkinson patients compared to healthy control participants (p<0.0014). A rest-tremor was detected in the three patients who were clinically assessed as having rest-tremor.ConclusionsThis study shows that standardized handwriting can provide objective measures for bradykinesia, tremor and micrographia to distinguish Parkinson patients from healthy control participants.
Monitoring of quantitative EEG (QEEG) parameters in the intensive care unit (ICU) can aid in the treatment of traumatic brain injury (TBI) patients by complementing visual EEG review done by an expert. We performed an explorative study investigating the prognostic value of 59 QEEG parameters in predicting the outcome of patients with severe TBI. Continuous EEG recordings were done on 28 patients with severe TBI in the ICU of Turku University Hospital. We computed a set of QEEG parameters for each patient, and correlated these to patient outcome, measured by dichotomized Glasgow Outcome Scale (GOS) at a follow-up visit between 6 and 12 months, using area under receiver operating characteristic curve (AUC) as a nonlinear correlation measure. For 17 of the 59 QEEG parameters (28.8%), the AUC differed significantly from 0.5, most of these parameters measured EEG power or variability. The best QEEG parameters for outcome prediction were alpha power (AUC = 0.87, P < .01) and variability of the relative fast theta power (AUC = 0.84, P < .01). The results of this study indicate that QEEG parameters provide useful information for predicting outcome in severe TBI. Novel QEEG parameters with potential in outcome prediction were found, the prognostic value of these parameters should be confirmed in later studies. The results also provide further evidence of the usefulness of parameters studied in preexisting studies.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests such as neuropsychological tests, MRI and cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs in differentiating between controls with subjective cognitive decline, dementia due to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and dementia with Lewy bodies. We used the multiclass Disease State Index classifier, which is the classifier used by the PredictND tool, to differentiate between controls and patients with the four different types of dementia. The multiclass Disease State Index classifier is an extension of a previously developed two-class Disease State Index classifier. As the two-class Disease State Index classifier, the multiclass Disease State Index classifier also offers a visualization of its decision making process, which makes it especially suitable for medical decision support where interpretability of the results is highly important. A subset of the Amsterdam Dementia cohort, consisting of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications, was used for the evaluation. The Disease State Index classifier was highly accurate in separating the five classes from each other (balanced accuracy 82.3%). Accuracy was highest for vascular dementia and lowest for dementia with Lewy bodies. For the 50% of patients for which the classifier was most confident on the classification the balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential diagnosis in clinical practice. The decision support system tested in this study was highly accurate in separating the different dementias and controls from each other. In addition to the predicted class, it also provides a confidence measure for the classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.