Unwanted self-discharge of LFP/AG and NMC811/AG cells can be caused by in-situ generation of a redox shuttle molecule after formation at elevated temperature with common alkyl carbonate electrolyte. This study investigates the redox shuttle generation for several electrolyte additives, e.g., vinylene carbonate and lithium difluorophosphate, by measuring the additive reduction onset potential, first cycle inefficiency and gas evolution during formation at temperatures between 25 and 70°C. After formation, electrolyte is extracted from pouch cells for visual inspection and quantification of redox shuttle activity in coin cells by cyclic voltammetry. The redox shuttle molecule is identified by GC-MS and NMR as dimethyl terephthalate. It is generated in the absence of an effective SEI-forming additive, according to a proposed formation mechanism that requires residual water in the electrolyte, catalytic quantities of lithium methoxide generated at the negative electrode and, surprisingly, polyethylene terephthalate tape within the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.