Green synthesis of metallic nanoparticles by means of renewable bioresources has emerged as a new trend in current nanotechnology research with improved environmental safety. In the current study, monodispersed gold nanoparticles (AuNPs) with excellent stability were prepared in a completely green and cost effective manner using aqueous extract of marine macroalgae-Padina tetrastromatica. The influence of reaction conditions such as the quantity of seaweed extract, temperature, precursor metal ion concentration, reaction time and pH on the biosynthesis of nanoparticle was evaluated spectroscopically and also with the help of high resolution transmission electron microscopy (HR-TEM). These physicochemical parameters not only affected the rate of formation but also the size and morphology of resultant nanoparticles. Optimum conditions resulted in the generation of nearly spherical AuNPs having an average particle size of 11.4 nm. The high crystallinity of the biogenic AuNPs was confirmed from characteristic diffraction peaks in XRD profile, clear lattice fringes in the HR-TEM image and bright circular spots in the SAED pattern. The presence of metallic gold was evidenced from EDAX profile. FTIR study revealed the role of secondary metabolites in the bioreduction as well as stabilization of AuNPs. The study also highlights the spectroscopic investigation on the catalytic efficacy of the biosynthesized AuNPs in the reduction reactions of hazardous organic dyes, eosin yellow and Congo red using sodium borohydride, which have a pseudo-first order kinetics. Thus, the biosynthesized metal nanoparticles using renewable marine resources like seaweeds act as promising materials for the application in environmental protection.
This paper focuses on the partitioning of trace metals in five selected coral species from Lakshadweep Archipelago, which remains as one of the least studied areas in the Indian Ocean. Based on the morphological features, selected coral species are classified as massive (Porites andrewsi), ramose or branching (Lobophyllia corymbosa, Acropora formosa and Psammocora contigua) and foliaceous (Montipora digitata). Relating trace metal concentrations with morphological features in skeleton, highest concentrations of all the trace metals (except Zn) were reported for the ramose type corals. In tissue, all the metals (essential as well as non essential) showed highest concentrations within the branching type corals. Irrespective of their growth characteristics/pattern, all species except P. contigua displayed higher concentrations of Pb, Ni, Mn and Cd within their skeleton compared to tissue which may exemplify a regulatory mechanism to avoid the build up of the concentrations of these metals in their bio-part, strikingly toxic metals like Cd and Pb. The concentrations of trace metals in the skeleton and tissues of these coral species were subjected to 3 way ANOVA based on non standardized original data and the results showed significant differences between metals and between species leading to high skeleton/ tissue - species interaction as well as skeleton/tissue - metal interaction. The significant values of student's t calculated are depicted in the form of Trellis diagrams.
This article focuses on the temporal and spatial distribution of three organophosphorous pesticides-malathion, methyl parathion, and chlorpyrifos-in the sedimentary environment of a backwater ecosystem, Kuttanad backwaters, situated in Kerala, India. Based on salinity distribution, geographic characteristics, and human activities prevailing in the area, the study area was divided into three zones: zone 1 with riverine characteristics, zone 2 with freshwater characteristics during and after the monsoon season and estuarine characteristics during the premonsoon season, and zone 3 with estuarine characteristics. The organophosphorus pesticides in the study area showed the order of enrichment as chlorpyrifos >malathion >methyl parathion. While studying the variations in pesticide concentrations seasonally, higher concentrations were observed during the premonsoon monsoon season, with the concentrations being lower than the detectable level. Sediment characteristics, such as pH, texture, organic carbon, moisture content, etc., had reflective effect on the degradation rates of pesticides. The runoff water from the paddy fields made a larger contribution of pesticide pollution to the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.