Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.
The series of methyl halides, CH(3)X (X = F, Cl, Br, and I), is prototypic for demonstrating the s.c. normal halogen dependence of light-atom nuclear magnetic resonance shielding constants in the presence of halogen atoms of varying electronegativity. We report a systematic experimental and first-principles theoretical study of the (13)C and (1)H shielding tensors in this series. The experimental shielding constants were obtained from gas-phase NMR experiments and the anisotropies were determined using liquid crystal NMR spectroscopy. After taking into account rovibrational effects and solute-solvent interactions, this provided the currently best experimental estimates for the full shielding tensors. Quantum chemical calculations were carried out at ab initio and density functional theory levels, involving relativistic corrections taken into account at the leading-order Breit-Pauli perturbation level. Anharmonic and harmonic vibrational corrections were performed. The main trends of the shielding constants and anisotropies of the nearby light (13)C and (1)H nuclei as functions of the halogen mass, were confirmed to be mainly due to relativistic spin-orbit effects. For carbon, also the scalar relativistic effects are important for quantitative results. Thermal averaging at 300 K decreases the magnitude of all the parameters but exhibits partial cancellation between the nonrelativistic and smaller relativistic rovibrational averages. For the shielding anisotropy, the relativistic terms add to the negative rovibrational effect. Overall, the current experimental and theoretical results are in excellent agreement for all the shielding parameters, setting a standard for further investigations of normal halogen dependence.
Rovibrational corrections, temperature dependence, and secondary isotope shifts of the (13)C nuclear shielding in CX(2) (X = O, S, Se, Te) are calculated taking into account the relativistic spin-orbit (SO) interaction. The SO effect is considered for the first time for the secondary isotope shifts. The nuclear shielding hypersurface in terms of nuclear displacements is calculated by using a density-functional theory method. Ab initio multiconfiguration self-consistent field calculations are done at the equilibrium geometry for comparison. (13)C NMR measurements are carried out for CS(2). The calculated results are compared with both present and earlier experimental data on CO(2), CS(2), and CSe(2). The heavy-atom SO effects on the rovibrational corrections of (13)C shielding are shown to be significant. For CSe(2) and CTe(2), reliable prediction of secondary isotope effects and their temperature dependence requires the inclusion of the SO corrections. In particular, earlier discrepancies of theory and experiment for CSe(2) are fully resolved by taking the SO interactions into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.