Background: Ppz1 orthologs, novel family of phosphatases, have a unique N-terminal non-catalytic domain. Results: Ppz1 ortholog from halotolerant yeast Debaryomyces hansenii plays important role in salt tolerance, cell wall integrity, and cell growth through distinct mechanism. Conclusion: Short serine arginine-rich motif in non-catalytic domain is essential for its role in salt tolerance. Significance: This motif is conserved among orthologs and functionally important.
Debaryomyces hansenii is one of the most osmotolerant and halotolerant yeasts. The molecular mechanisms underlying its extreme osmotolerance and halotolerance have drawn considerable attention in the recent past. However, progress in this regard has been limited due to lack of availability of a transformation system and molecular tools to study the functions of the genes in D. hansenii. Here, we have described the development of an efficient transformation system for D. hansenii that is based on a histidine auxotrophic recipient strain and the DhHIS4 gene as the selectable marker. By screening the D. hansenii genomic library, we have isolated several autonomous replication sequences that can be used for constructing a replicating vector. Moreover, our study is the first to demonstrate gene disruption in D. hansenii by homologous recombination.
Thiamine deficiency is common in populations consuming polished rice as a major source of carbohydrates. Thiamine is required to synthesize thiamine pyrophosphate (TPP), an essential cofactor of enzymes of central metabolism. Its biosynthesis pathway has been partially elucidated and the effect of overexpression of a few genes such as thi1 and thiC, on thiamine accumulation in rice has been reported. Based on current knowledge, this review focuses on the potential of gene editing in metabolic engineering of thiamine biosynthesis pathway to improve thiamine in rice grains. Candidate genes, suitable for modification of the structural part to evolve more efficient versions of enzymes in the pathway, are discussed. For example, adjacent cysteine residues may be introduced in the catalytic domain of thi4 to improve the turn over activity of thiamine thiazole synthase 2. Motif specific editing to modify promoter regulatory regions of genes is discussed to modulate gene expression. Editing cis acting regulatory elements in promoter region can shift the expression of transporters and thiamine binding proteins to endosperm. This can enhance dietary availability of thiamine from rice grains. Differential transcriptomics on rice varieties with contrasting grain thiamine and functional genomic studies will identify more strategic targets for editing in future. Developing functionally enhanced foods by biofortification is a sustainable approach to make diets wholesome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.