The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Where predation is seasonally variable, the potential impact of a predator on individual prey species will critically depend on phenological synchrony of the predator with the prey. Here we explored the effects of seasonally variable predation in multispecies assemblages of short-lived prey. The study was conducted in a landscape in which we had previously demonstrated generally high, but spatially and seasonally variable dragonfly-induced mortality in adult butterflies. In this system, we show that patterns of patch occupancy in butterfly species flying during periods of peak dragonfly abundance are more strongly associated with spatial variation in dragonfly abundance than patch occupancy of species flying when dragonfly density was low. We provide evidence indicating that this differential sensitivity of different butterfly species to between-habitat differences in dragonfly abundance is causally tied to seasonal variation in the intensity of dragonfly predation. The effect of dragonfly predation could also be measured at the level of whole local butterfly assemblages. With dragonfly density increasing, butterfly species richness decreased, and butterfly species composition tended to show a shift toward a greater proportion of species flying during periods of off-peak dragonfly abundance.
1. During the past century, semi-natural grasslands, once widespread throughout Europe, have largely been converted into intensively managed agricultural areas, abandoned or afforested. These large-scale land-use changes have already resulted in considerable biodiversity loss but can also lead to decline in ecosystem service provision and ecosystem multifunctionality.2. We assessed the impact of afforestation and abandonment of semi-natural grasslands on the supply of ecosystem services in Western Estonia. We compared a wide array of services provided by open grasslands, abandoned grasslands and afforested grasslands. Additionally, we analysed the impact of land-use change and species richness on ecosystem multifunctionality.3. Significant declines in the supply of pollination services, natural pest regulation, forage production, soil quality, wild food and cultural appreciation of landscape were detected as a result of overgrowing or afforestation.4. There was significant positive relationship between species richness and ecosystem multifunctionality, that is, more biodiverse grasslands were able to support more services at higher capacity. 5. Results show that both grassland degradation due to abandonment, as well as grassland afforestation, have significant negative impacts on biodiversity, on the supply of multiple important ecosystem services and on the ecosystem multifunctionality.6. Synthesis and applications. Temperate semi-natural grasslands have high biodiversity and capacity to deliver multiple important ecosystem services simultaneously.
Understanding ecological requirements of endangered species is a primary precondition of successful conservation practice. Regrettably, we know surprisingly little about the life history of numerous threatened insects, and about their use of larval host plants in particular. The brown butterflies (Nymphalidae: Satyrinae) have traditionally been considered polyphagous on grasses and indiscriminatory in their oviposition behavior. However, detailed studies on several species have revealed local specialization in host plant use as well as the decisive role of microlimatic conditions as determinants of habitat quality. The present study addresses host plant relationships in the endangered brown butterfly Coenonympha hero (L.) at the northern limit of its European distribution. We combine laboratory-based host preference and performance tests with an analysis of microhabitat use by adult butterflies in the field. Both lines of evidence suggest that C. hero is polyphagous enough not to be associated with one particular host species. Oviposition choices of C. hero are not driven by host plant species but rather by structural characteristics of the substrate. The preferred rigid needlelike structures may serve as cues of 'transparent' vegetation which allows the larvae to benefit from sunlight reaching the lower strata of the tuft. Our results suggest that conservation efforts should prioritize microclimatic parameters, rather than the presence of any particular host plant species, as decisive determinants of habitat quality in C. hero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.