The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.
We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide–Kv1.3). Both the apo-Kv1.3 and dalazatide–Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide–Kv1.3, binding of dalazatide to the channel’s outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3’s transition into the drug-blocked state.
Ribosomes are the dynamic protein synthesis machineries of the cell. They may exist in different functional states in the cell. Therefore, it is essential to have structural information on these different functional states of ribosomes to understand their mechanism of action. Here, we present single particle cryo-EM reconstructions of the Mycobacterium smegmatis 70S ribosomes in the hibernating state (with HPF), trans-translating state (with tmRNA), and the P/P state (with P-tRNA) resolved to 4.1, 12.5, and 3.4 Å, respectively. A comparison of the P/P state with the hibernating state provides possible functional insights about the Mycobacteria-specific helix H54a rRNA segment. Interestingly, densities for all the four OB domains of bS1 protein is visible in the hibernating 70S ribosome displaying the molecular details of bS1-70S interactions. Our structural data shows a Mycobacteria-specific H54a-bS1 interaction which seems to prevent subunit dissociation and degradation during hibernation without the formation of 100S dimer. This indicates a new role of bS1 protein in 70S protection during hibernation in Mycobacteria in addition to its conserved function during translation initiation.
Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins. INTRODUCTIONExpression of protein-coding genes is a complex multistep process. Precursor messenger RNAs (pre-mRNAs) are synthesized by RNA polymerase II (Pol-II) and assembled into ribonucleoprotein (RNP) complexes during transcription. The pre-mRNPs must be processed to become mature mRNPs, which are exported to the cytoplasm and translated into protein. Mutations in the DNA or errors in the transcription and processing reactions can lead to the synthesis of aberrant mRNPs. Eukaryotic cells have evolved quality control mechanisms that identify aberrant mRNPs and prevent their expression into protein. In the yeast Saccharomyces cerevisiae there are at least three nuclear steps of mRNP biogenesis that are under surveillance: the cleavage and polyadenylation of the 3Ј end (Hilleren et al., 2001), the assembly of the mRNA-protein complexes (Zenklusen et al., 2002;Luna et al., 2005), and the removal of introns (Galy et al., 2004). In all cases, mRNPs with assembly and/or processing defects are detected by nuclear surveillance mechanisms, retained in the nucleus, and degraded (reviewed by Vinciguerra and Stutz, 2004;Sommer and Nehrbass, 2005;Saguez et al., 2005). Genetic studies in S. cerevisiae have identified the nuclear exosome as a key player in the recognition and retention of defective transcripts (reviewed by Jensen et al., 2003;Houseley et al., 2006;Vanacova and Stefl, 2007;Schmid and Jensen, 2008).The exosome is a protein complex with ribonuclease activity (Mitchell et al., 1997;Allmang et al., 1999;Mitchell and Tollervey, 2000). The core of the exosome has a barrel-like architecture (reviewed by Lorentzen et al., 2008). The barrel is made of nine protein subunits organized into two rings, a hexameric ring and a trimeric ring, and the structure of the barrel is conserved throughout evolution (Lorentzen et al., 2005;Liu et al., 2006;Wang et al., 2007). Two additional proteins, Dis3/Rrp44 and R...
Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP’s neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.