The off-axis three-mirror optical system is derived from the classical Cooke triplet or a derivative of the inverse-telephoto lens. By properly arranging an internal reimaging mechanism or altering the location of the optical stop, one can create different versions of three-mirror optical systems. They include very compact configurations and wide field-of-view imagers. Insights into the optical design process, manufacturing, stray light management, and remote sensing applications are presented.
In this work, we study a double-sense twisted low-birefringence Sagnac loop structure as a sound/vibration sensing device. We study the relation between the adjustments of a wave retarder inside the loop (which allows controlling the transmission characteristic to deliver 10, 100, and 300 μW average power at the output of the system) and the response of the Sagnac sensor to vibration frequencies ranging from 0 to 22 kHz. For a 300 m loop Sagnac, two sets of experiments were carried out, playing at the same time all the sound frequencies mixed for ∼1 s, and playing a sweep of frequencies for 30 s. In both cases, the time- and frequency-domain transmission amplitudes are larger for an average power of 10 μW, and smaller for an average power of 300 μW. For mixed frequencies, the Fourier analysis shows that the Sagnac response is larger for low frequencies (from 0 to ∼5 kHz) than for high frequencies (from ∼5 kHz to ∼22 kHz). For a sweep of frequencies, the results reveal that the interferometer perceives all frequencies. However, beyond ∼2.5 kHz, harmonics are present each ∼50 Hz, revealing that some resonances are present. The results about the influence of the power transmission through the polarizer and power emission of laser diode (LD) on the Sagnac interferometer response at high frequencies reveal that our system is robust, and the results are highly reproducible, and harmonics do not depend on the state of polarization at the input of the Sagnac interferometer. Furthermore, increasing the LD output power from 5 mW to 67.5 mW allows us to eliminate noisy signals at the system output. in our setup, the minimum sound level detected was 56 dB. On the other hand, the experimental results of a 10 m loop OFSI reveal that the response at low frequencies (1.5 kHz to 5 kHz) is minor compared with the 300 m loop OFSI. However, the response at high frequencies is low but still enables the detection of these frequencies, yielding the possibility of tuning the response of the vibration sensor by varying the length of the Sagnac loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.