The deployment of a broadband public safety (PS) mobile network can be undertaken in different ways. One method involves combining commercial networks with private ones to reduce their deployment cost and time to market. In shared commercial networks, priorities should be defined to differentiate traffic not only between consumers and PS users but also between different PS organizations and type of services. Prioritization must also ensure that emergency calls are always served under normal conditions and during disasters. The recent advent of the fifth generation (5G) wireless standard introduces new technologies, such as network slicing (NS), which allows the provision of logical PS networks in a shared 5G system wherein each slice can be dedicated to an organization or to a type of service. However, 5G management and orchestration become a challenging task with NS, e.g., in handling resource allocation between slices with diverse requirements. Therefore, efficient solutions for slice resource allocation are required to facilitate this task. In this paper, we present a review of adaptive and dynamic resource allocation leveraging on heuristic and reinforcement learning-based algorithms that have been proposed in the recent literatures. The challenge in implementing these algorithms is to find the most suitable one for our problem, i.e., an algorithm that is highly scalable, able to solve problems immediately, and exhibits the best convergence properties in terms of speed and ability to find the global optimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.