Transforming growth factor-beta (TGF-B) plays an important role in embryo implantation; however, TGF-B requires liberation from its inactive latent forms (i.e., large latent TGF-B complex [LLC] and small latent TGF-B complex [SLC]) to its biologically active (i.e., monomer or dimer) forms in order to act on its receptors (TGF-BRs), which in turn activate SMAD2/3. Activation of TGF-B1 from its latent complexes in the uterus is not yet deciphered. We investigated uterine latent TGF-B1 complex and its biologically active form during implantation, decidualization, and delayed implantation. Our study, utilizing nonreducing SDS-PAGE followed by Western blotting and immunoblotting with TGF-B1, LTBP1, and latency-associated peptide, showed the presence of LLC and SLC in the uterine extracellular matrix and plasma membranous protein fraction during stages of the implantation period. A biologically active form of TGF-B1 (~17-kDa monomer) was highly elevated in the uterine plasma membranous compartment at the peri-implantation stage (implantation and nonimplantation sites). Administration of hydroxychloroquine (an inhibitor of pro-TGF-B processing) at the preimplantation stage was able to block the liberation of biologically active TGF-B1 from its latent complex at the postimplantation stage; as a consequence, the number of implantation sites was reduced at Day 5 (1000 h), as was the number of fetuses at Day 13. The inhibition of TGF-B1 showed reduced levels of phosphorylated SMAD3. Further, the delayed-implantation mouse model showed progesterone and estradiol coordination to release the active TGF-B1 form from its latent complex in the receptive endometrium. This study demonstrates the importance of liberation of biologically active TGF-B1 during the implantation period and its regulation by estradiol.
Integrins (ITGs) are mediators of cell-cell and cell-matrix interactions, which are also associated with embryo implantation processes by controlling the interaction of blastocyst with endometrium. During early pregnancy, ITGbeta8 (ITGB8) has been shown to interact with latent transforming growth factor (TGF) beta 1 (TGFB1) at the fetomaternal interface. However, the precise role of ITGB8 in the uterus and its association with embryo implantation has not been elucidated. Therefore, we attempted to ascertain the role of ITGB8 during the window of embryo implantation process by inhibiting its function or protein expression. Uterine plasma membrane-anchored ITGB8 was augmented at peri-implantation and postimplantation stages. A similar pattern of mRNA expression was also found during the embryo implantation period. An immunolocalization study revealed the presence of ITGB8 on luminal epithelial cells along with mild expression on the stromal cells throughout the implantation period studied; however, an intense fluorescence was noted only during the peri- and postimplantation stages. Bioneutralization and mRNA silencing of the uterine Itgb8 at preimplantation stage reduced the rate/frequency of embryo implantation and subsequent pregnancy, suggesting its indispensable role during the embryo implantation period. ITGB8 can also regulate the liberation of active TGFB1 from its latent complex, which, in turn, acts on SMAD2/3 phosphorylation (activation) in the uterus during embryo implantation. This indicates involvement of ITGB8 in the embryo implantation process through regulation of activation of TGFB1.
Pregnancy requires successful implantation of an embryo, which occurs during a restricted period defined as 'receptivity of the endometrium' and is influenced by the ovarian steroids progesterone and oestradiol. The role of poly(ADP-ribose)polymerase-1 (PARP1) in apoptosis is well established. However, it is also involved in cell differentiation, proliferation and tissue remodelling. Previous studies have described the presence of PARP in the uterus, but its exact role in embryo implantation is not yet elucidated. Hence, in this study, we studied the expression of PARP1 in the uterus during embryo implantation and decidualisation, and its regulation by ovarian steroids. Our results show upregulation of the native form of PARP1 (w116 kDa) in the cytosolic and nuclear compartments of implantation and non-implantation sites at day 5 (0500 h), followed by downregulation at day 5 (1000 h), during the embryo implantation period. The transcript level of Parp1 was also augmented during day 5 (0500 h). Inhibition of PARP1 activity by the drug EB-47 decreased the number of embryo implantation sites and blastocysts at day 5 (1000 h). Further, cleavage of native PARP1 was due to the activity of caspase-3 during the peri-implantation stage (day 5 (0500 h)), and is also required for embryo implantation, as inhibition of its activity compromised blastocyst implantation. The native (w116 kDa) and cleaved (w89 kDa) forms of PARP1 were both elevated during decidualisation of the uterus. Furthermore, the expression level of PARP1 in the uterus was found to be under the control of the hormone oestrogen. Our results clearly demonstrate that PARP1 participates in the process of embryo implantation.
Allergic bronchopulmonary aspergillosis patients (ten in the age group 5-13) were studied with respect to clinical and immunodiagnostic tests. All the patients showed wheal and flare reaction with A. fumigatus antigens. Clinical features included bilateral infiltration and hilar lymphadenopathy. Eosinophilic count in these patients was observed to be in the range of 300-2500/mm3. Sera of six patients indicated precipitin reaction with A. fumigatus antigens. An elevated total serum IgE was noticed in all the patients. A. fumigatus specific IgG and IgE antibodies were increased in these patients. Optical density of the sera of all the patients against controls were observed to be in the range of (0.426 to 1.8 for IgG and 0.147 to 0.562 for IgE) by ELISA. Western blot analysis indicated that there may be correlation between the clinical stages of the disease and immunological reactivity of the sera with various antigenic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.