Partial cavity flows forming on a NACA0015 hydrofoil are visualized using high-speed cinematography and time-resolved X-ray densitometry. These observations reveal the underlying flow features that lead to the cloud cavity shedding. Previous studies have reported that both near-surface liquid re-entrant flow and bubbly shock waves can serve as the mechanisms causing cavity pinch-off and cloud shedding. We identify both mechanisms in the current study. The cavity shedding frequency was also examined and related to the underlying flow dynamics. The probability of re-entrant flow or bubbly shock-induced shedding processes are quantified, and the likelihood of each mechanism is shown to be a function of both the cavitation number and the Mach number of the bubbly mixture within the separated region of the cavity. When the Mach number of the two-phase mixture in the cavity exceeds unity, shock waves become the dominant mechanism that lead to large-scale cavity shedding and cloud cavitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.