Consumers of the 21st century tend to be more aware and demand safe as well as nutritionally balanced food. Unfortunately, conventional thermal processing makes food safe at the cost of hampering nutritional value. The food industry is trying to develop non-thermal processes for food preservation. Pulsed light (PL) is one such emerging non-thermal food processing method that can decontaminate food products or food contact surfaces using white light. Exposure to intense light pulses (in infrared, visible, and ultraviolet (UV) regions) causes the death of microbial cells, rendering the food safe at room temperature. PL technology is an excellent and rapid method of disinfection of product surfaces and is increasingly being used for food surfaces and packaging decontamination, enabling the minimal processing of food. This paper aims to give an overview of the latest trends in pulsed light research, discuss principles of pulse generation, and review applications of various PL systems for the inactivation of microorganisms in vitro, in various food products, and on food contact surfaces. Effects of PL on food quality, challenges of the process, and its prospects are presented.
Lipoxygenase (LOX) is a widely distributed enzyme in plant and animal cells. It catalyzes the oxidation of polyunsaturated fatty acid into fatty acid hydroperoxides. LOX is also associated with the production of aroma substrates, color changes, and alternation of physico‐chemical characteristics. The associated reaction could be either desirable or undesirable in food production. An understanding of LOX characteristics and functional principles is essential for utilizing LOX as a natural food ingredient. Legumes are nutrient‐dense food ingredient and also serve as a good source of LOX. This paper is focused on the biological function of LOX in legumes, the history of legume LOX, the application of legume LOX in the food industry, and the inhibition strategies of unwanted LOX‐catalyzed reaction.
Artemisia herba-alba Asso. (Wormwood) is a wild aromatic herb that is popular for its healing and medicinal effects and has been used in conventional as well as modern medicine. This research aimed at the extraction, identification, and quantification of phenolic compounds in the aerial parts of wormwood using Soxhlet extraction, as well as characterizing their antimicrobial and anitoxidant effects. The phenolic compounds were identified in different extracts by column chromatography, thin layer chromatography (TLC), and high performance liquid chromatography. Five different fractions, two from ethyl acetate extraction and three from ethanolic extraction were obtained and evaluated further. The antimicrobial activity of each fractions was evaluated against two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative microorganisms (Escherichia coli and Proteus vulgaris) using the disc-diffusion assay and direct TLC bioautography assay. Fraction I inhibited B. cereus and P. vulgaris, Fraction II inhibited B. cereus and E. coli, Fraction III inhibited all, except for P. vulgaris, while Fractions IV and V did not exhibit strong antimicrobial effects. Their antioxidant capabilities were also measured by calculating their ability to scavenge the free radical using DPPH method and the ferric reducing antioxidant power (FRAP) assay. Ethanolic fractions III and V demonstrated excellent antioxidant properties with IC50 values less than 15.0 μg/mL, while other fractions also had IC50 values less than 80.0 μg/mL. These antioxidant effects were highly associated with the number of phenolic hydroxyl group on the phenolics they contained. These extracts demonstrated antimicrobial effects, suggesting the different phenolic compounds in these extracts had specific inhibitory effects on the growth of each bacteria. The results of this study suggested that the A. herba-alba can be a source of phenolic compounds with natural antimicrobial and antioxidant properties which can be used for potential pharmaceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.