There are many examples of biologically active food proteins, with physiological significance beyond the pure nutritional requirements that concern available nitrogen for normal growth and maintenance. Moreover, there are many physiologically active peptides, derived by protease activity from various food protein sources; however, relationships between structural properties and functional activities have not been completely elucidated. Many bioactive peptides have in common structural properties that include a relatively short peptide residue length (e.g. 2-9 amino acids), possessing hydrophobic amino acid residues in addition to proline, lysine or arginine groups. Bioactive peptides are also resistant to the action of digestion peptidases. Antihypertensive peptides, known as Angiotensin I converting enzyme (ACE) inhibitors have been derived from milk, corn and fish protein sources. Peptides with opioid activities are derived from wheat gluten or casein, following digestion with pepsin. Exorphins, or opioid peptides derived from food proteins such as wheat and milk (e.g. exogenous sources) have similar structure to endogenous opioid peptides, with a tyrosine residue located at the amino terminal or bioactive site. Immunomodulatory peptides derived from tryptic hydrolysates of rice and soybean proteins act to stimulate superoxide anions (reactive oxygen species-ROS), which triggers non-specific immune defense systems. Antioxidant properties that prevent peroxidation of essential fatty acids have also been shown for peptides derived from milk proteins. The addition of a Leu or Pro residue to the N-terminus of a His-His, dipeptide will enhance antioxidant activity and facilitate further synergy with non-peptide antioxidants (e.g. BHT). We also show herein, that the tryptic digests of casein yielding caseinophosphopeptides exhibits both hydrophilic and lipophilic antioxidant activity due to both metal ion sequestering and quenching of ROS. The separation and purification of bioactive peptides which will involve development of automated and continuous systems is an important field for Food chemists. Much effort has been given to develop selective column chromatography methods that can replace batch methods of salting out, or using solvent extraction to isolate and purify bioactive peptides. Advances here will enable recovery of bioactive peptides with minimal destruction thus enabling utilization by returning these active peptides to functional food or specific nutraceutical applications.
Abstract:Coffee is a rich source of dietary antioxidants, and this property, coupled with the fact that coffee is one of the world's most popular beverages, has led to the understanding that coffee is a major contributor to dietary antioxidant intake. Brewed coffee is a complex food matrix with numerous phytochemical components that have antioxidant activity capable of scavenging free radicals, donating hydrogen and electrons, providing reducing activity and also acting as metal ion pro-oxidant chelators. More recent studies have shown that coffee components can trigger tissue antioxidant gene expression and protect against gastrointestinal oxidative stress. This paper will describe different in vitro, cell-free and cell-based assays that both characterize and compare the antioxidant capacity and mechanism of action of coffee and its bioactive constituents. Moreover, evidence of cellular antioxidant activity and correlated specific genomic events induced by coffee components, which are relevant to antioxidant function in both animal and human studies, will be discussed.
The use of coffee leaves as a novel beverage has recently received consumer interest, but there is little known about how processing methods affect the quality of final product. We applied tea (white, green, oolong and black tea) processing methods to process coffee leaves and then investigated their effects on phytochemical composition and related antioxidant and anti-inflammatory properties. Using Japanese-style green tea-processing of young leaves, and black tea-processing of mature (BTP-M) coffee leaves, produced contrasting effects on phenolic content, and associated antioxidant activity and nitric oxide (NO) inhibitory activity in IFN-γ and LPS induced Raw 264.7 cells. BTP-M coffee leaves also had significantly (P < .05) higher responses in NO, iNOS, COX-2, as well as a number of cytokines, in non-induced Raw 264.7. Our findings show that the age of coffee leaves and the type of processing method affect phytochemical profiles sufficiently to produce characteristic antioxidant and anti-inflammatory activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.