N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.
Methanol extracts of freeze-dried Echinacea (E. angustifolia, E. pallida, and E. purpurea) roots were examined for free radical scavenging capacities and antioxidant activities. Root extracts of E. angustifolia, E. pallida, and E. purpurea were capable of scavenging hydroxyl radical. Similar scavenging activities for each variety were found for both 1,1-diphenyl-2-picrylhydrazyl radical and ABTS radical. Meanwhile, antioxidant activities of all three varieties of Echinacea were found to delay the formation of conjugated diene hydroperoxide induced by the thermal decomposition of 2, 2'-azobis(2-amidinopropane) dihydrochloride and extend the lag phase of peroxidation of soybean liposomes. Echinacea root extracts suppressed the oxidation of human low-density lipoprotein, as evaluated by reduced agarose electrophoretic mobility following oxidative modification by Cu(2+). The mechanisms of antioxidant activity of extracts derived from Echinacea roots included free radical scavenging and transition metal chelating.
Ginseng (Panax ginseng, C.A. Meyer) has been a popular herbal remedy used in eastern Asian cultures for thousands of years. In North America, the ginseng species indigenous to both Canada and the United States (Panax quinquefolium) represents an important industry for both domestic and export markets. There are numerous theories and claims describing the efficacy of ginseng, which can combat stress, enhance both the central and immune systems and contribute towards maintaining optimal oxidative status against certain chronic disease states and aging. Risk issues concerning the safety of ginseng at recommended dosages are less prominent and scientifically based. While some epidemiological or clinical studies have reported indications of efficacy for specific health benefits or potential toxicity, there are an equal number of studies that provide contradictory evidence. This situation has led to questionable conclusions concerning specific health benefits or risks associated with ginseng. Recent advances in the development of standardized extracts for both Panax ginseng (G-115) and Panax quinquefolius (CNT-2000) have and will continue to assist in the assessment of efficacy and safety standards for ginseng products. This paper reviews the scientific literature and evidence for ginseng efficacy and safety derived mostly from in vitro and animal studies and places emphasis on the need for more randomized, double-blinded, placebo clinical studies that can provide unequivocal conclusions. An example of the efficacy and safety of ginseng is provided with the description of biological activity of a North American ginseng extract (NAGE), which includes illustrating mechanisms for antioxidant activity without prooxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.