<span lang="EN-US">With the rising number of accidents in Indonesia, it is still necessary to evaluate and analyze accident data. The categorization of traffic accident data has been developed using word embedding, however additional work is needed to achieve better results. Several informative named entities are frequently sufficient to differentiate whether or not information on a traffic accident exists. Named-entities are informational characteristics that can offer details about a text. The influence of named-entities on thematic text categorization is examined in this paper. The information was collected using a Twitter social media crawl. Preprocessing is done at the beginning of the process to modify and delete useful text as well as label specified entities. On Support Vector Machine (SVM), scheme comparisons were performed for (i) Word Embedding, (ii) the number of occurrences of Named Entities, and (iii) the combination of the two is known as a Hybrid. The Hybrid scheme produced an improvement in classification accuracy of 90.27 percent when compared to Word Embedding scheme and occurrences of named entities scheme, according to tests conducted using 1.885 data consisting of 788 accident data and 1.067 non-accident data.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.