Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.