VADAR (Volume Area Dihedral Angle Reporter) is a comprehensive web server for quantitative protein structure evaluation. It accepts Protein Data Bank (PDB) formatted files or PDB accession numbers as input and calculates, identifies, graphs, reports and/or evaluates a large number (>30) of key structural parameters both for individual residues and for the entire protein. These include excluded volume, accessible surface area, backbone and side chain dihedral angles, secondary structure, hydrogen bonding partners, hydrogen bond energies, steric quality, solvation free energy as well as local and overall fold quality. These derived parameters can be used to rapidly identify both general and residue-specific problems within newly determined protein structures. The VADAR web server is freely accessible at http://redpoll.pharmacy.ualberta.ca/vadar.
The advancements in nanoparticles (NPs) may be lighting the sustainable and eco-friendly path to accelerate the removal of toxic compounds from contaminated soils. Many efforts have been made to increase the efficiency of phytoremediation, such as the inclusion of chemical additives, the application of rhizobacteria, genetic engineering, etc. In this context, the integration of nanotechnology with bioremediation has introduced new dimensions for revamping the remediation methods. Hence, advanced remediation approaches combine nanotechnological and biological remediation methods in which the nanoscale process regulation supports the adsorption and deterioration of pollutants. Nanoparticles absorb/adsorb a large variety of contaminants and also catalyze reactions by lowering the energy required to break them down, owing to their unique surface properties. As a result, this remediation process reduces the accumulation of pollutants while limiting their spread from one medium to another. Therefore, this review article deals with all possibilities for the application of NPs for the remediation of contaminated soils and associated environmental concerns.
Microplastics (MPs) are ubiquitous and constitute a global hazard to the environment because of their robustness, resilience, and long-term presence in the ecosystem. For now, the majority of research has primarily focused on marine and freshwater ecosystems, with just a small amount of attention towards the terrestrial ecosystems. Although terrestrial ecosystems are recognized as the origins and routes for MPs to reach the sea, there is a paucity of knowledge about these ecological compartments, which is necessary for conducting effective ecological risk assessments. Moreover, because of their high persistence and widespread usage in agriculture, agribusiness, and allied sectors, the presence of MPs in arable soils is undoubtedly an undeniable and severe concern. Consequently, in the recent decade, the potential risk of MPs in food production, as well as their impact on plant growth and development, has received a great deal of interest. Thus, a thorough understanding of the fate and risks MPs, as well as prospective removal procedures for safe and viable agricultural operations in real-world circumstances, are urgently needed. Therefore, the current review is proposed to highlight the potential sources and interactions of MPs with agroecosystems and plants, along with their remediation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.