Cancer cells are known to be glycolytic, driving increased glucose consumption and its conversion to lactate. This process modulates the tumor microenvironment (TME). In the TME, glycolytically activated immune cells often become anergic, leading to an increase in immune checkpoint proteins such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Most glycolytic inhibitors not only inhibit glycolysis of cancer but also of immune cells. Therefore, using a nanoparticle-delivered agent to preferentially inhibit glycolysis in tumor cells, and not in immune cells, has the potential to attenuate the expression of checkpoint proteins. Pyruvate dehydrogenase kinase 1 (PDK1) can be an important target to achieve tumor specific glycolysis inhibition. We report TME modulation by a mitochondrion-targeted nanoparticle (NP) containing a prodrug of dichloroacetate (DCA), a PDK1 inhibitor. We demonstrated that the targeted NP alters the TME which results in increased immunological activation against cancer cells, causing a decrease in mean tumor volume. Here, we also show findings that when Mito-DCA, a prodrug of DCA, was combined with anti-PD-1, a checkpoint inhibitor, results from in vivo syngeneic models showed an upregulation in the number of tumor infiltrating lymphocytes. This work provides a platform to bring therapeutic efficacy by selectively inhibiting glycolysis of cancer cells.
The spread of Zika virus (ZIKV) infection across the USA and various countries in the last three years will not only have a direct impact on the U.S. health care system but has caused international concerns as well. The ultimate impact of ZIKV infection remains to be understood. Currently, there are no therapeutic or vaccine options available to protect those infected by ZIKV. The drug ivermectin (IVM) was found to be a viable agent for the prevention of transmission of ZIKV.
There is urgent therapeutic need for COVID-19, a disease for which there are currently no widely effective approved treatments and the emergency use authorized drugs do not result in significant and widespread patient improvement. The food and drug administration-approved drug ivermectin has long been shown to be both antihelmintic agent and a potent inhibitor of viruses such as Yellow Fever Virus. In this study, we highlight the potential of ivermectin packaged in an orally administrable nanoparticle that could serve as a vehicle to deliver a more potent therapeutic antiviral dose and demonstrate its efficacy to decrease expression of viral spike protein and its receptor angiotensin-converting enzyme 2 (ACE2), both of which are keys to lowering disease transmission rates. We also report that the targeted nanoparticle delivered ivermectin is able to inhibit the nuclear transport activities mediated through proteins such as importin α/β1 heterodimer as a possible mechanism of action. This study sheds light on ivermectin-loaded, orally administrable, biodegradable nanoparticles to be a potential treatment option for the novel coronavirus through a multilevel inhibition. As both ACE2 targeting and the presence of spike protein are features shared among this class of virus, this platform technology has the potential to serve as a therapeutic tool not only for COVID-19 but for other coronavirus strains as well.
The "leaky pipeline" of women in science, technology, engineering, and mathematics (STEM), which is especially acute for academic mothers, continues to be problematic as women face continuous cycles of barriers and obstacles to advancing further in their fields. The severity and prevalence of the COVID-19 pandemic both highlighted and exacerbated the unique challenges faced by female graduate students, postdocs, research staff, and principal investigators because of lockdowns, quarantines, school closures, lack of external childcare, and heightened family responsibilities, on top of professional responsibilities. This perspective provides recommendations of specific policies and practices that combat stigmas faced by women in STEM and can help them retain their careers. We discuss actions that can be taken to support women within academic institutions, journals, government/federal centers, universitylevel departments, and individual research groups. These recommendations are based on prior initiatives that have been successful in having a positive impact on gender equitya central tenet of our postpandemic vision for the STEM workforce.W omen in scientific fields continue to face an uphill struggle with under-representation, salary discrepancies, and increased career-related hardships. Despite progress over the past decades, these challenges were significantly aggravated by the COVID-19 pandemic and have accentuated the so-called "leaky pipeline", a model that depicts how women in science, technology, engineering, and mathematics (STEM) have missed opportunities due to gender bias and existing structural obstacles. These barriers affect all facets of the scientific enterprise, including publishing, hiring, funding, and advancement into more senior positions. 1,2 The consequence is a stagnant gender gap among researchers and faculty, despite significantly increased numbers of women receiving advanced degrees in STEM. 3−5 Broadly speaking, more than 70% of STEM laboratories have male principal investigators (PIs), and these laboratories are less likely to include female graduate students and postdoctoral trainees. 6 Women are also 10−20% less likely to earn the title of PI compared to male peers. 7,8 On average, startup funds offered to women are ∼$500,000 less than those garnered by their equivalently qualified male counterparts. 9 When manuscripts written by women are reviewed by all-male teams of reviewers, their work is less likely to be accepted for publication. 10
Human neurotropic immunodeficiency virus (HIV) ingress into the brain and its subsequent replication after infection results in viral reservoirs in the brain. The infected cells include microglia, perivascular macrophages, and astrocytes. HIV-associated neurocognitive disorders (HAND) affect glial cells by activating microglia and macrophages through neuroinflammation, as well as astrocytes through mitochondrial dysfunctions and the onset of oxidative stress, impairing the ability of these cells to engage in neuroprotection. Furthermore, the risk of neuroinflammation associated with HAND is magnified by recreational drug use in HIV-positive individuals. Most of the therapeutic options for HIV cannot be used to tackle the virus in the brain and treat HAND due to the inability of currently available combination antiretroviral therapies (ARTs) and neuroprotectants to cross the blood−brain barrier, even if the barrier is partially compromised by infection. Here, we report a strategy to deliver an optimized antiretroviral therapy combined with antioxidant and anti-inflammatory neuroprotectants using biodegradable brain-targeted polymeric nanoparticles to reduce the burden caused by viral reservoirs in the brain and tackle the oxidative stress and inflammation in astrocytes and microglia. Through in vitro coculture studies in human microglia and astrocytes as well as an in vivo efficacy study in an EcoHIV-infected, methamphetamine-exposed animal model, we established a nanoparticle-based therapeutic strategy with the ability to treat HIV infection in the central nervous system in conditions simulating drug use while providing enhanced protection to astrocytes, microglia, and neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.