Local tissue infiltration of Medulloblastoma (MB) tumor cells precedes metastatic disease but little is still known about intrinsic regulation of migration and invasion in these cells.We found that MAP4K4, a pro-migratory Ser/Thr kinase, is overexpressed in 30% of primary MB tumors and that increased expression is particularly associated with the frequently metastatic SHH β subtype. MAP4K4 is a driver of migration and invasion downstream of c-Met, which is transcriptionally up-regulated in SHH MB. Consistently, depletion of MAP4K4 in MB tumor cells restricts HGF-driven matrix invasion in vitro and brain tissue infiltration ex vivo. We show that these pro-migratory functions of MAP4K4 involve the activation of the integrin β-1 adhesion receptor and are associated with increased endocytic uptake. The consequent enhanced recycling of c-Met caused by MAP4K4 results in the accumulation of activated c-Met in cytosolic vesicles, which is required for sustained signaling and downstream pathway activation.The parallel increase of c-Met and MAP4K4 expression in SHH MB could predict an increased potential of these tumors to infiltrate brain tissue and cause metastatic disease. Molecular targeting of the underlying accelerated endocytosis and receptor recycling could represent a novel approach to block pro-migratory effector functions of MAP4K4 in metastatic cancers.
The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling.
Medulloblastoma (MB) is a paediatric cancer of the cerebellum that can develop cerebellar and leptomeningeal metastases. Local brain tissue infiltration, the underlying cause of metastasis and relapse, remains unexplored. We developed a novel approach to investigate tissue infiltration of MB using organotypic cerebellum slice culture (OCSC). We show that cellular and structural components of cerebellar tissue in OCSCs are maintained for up to 30 days ex vivo, and that OCSCs foster tumour growth and cell proliferation. Using cell-based models of sonic hedgehog (SHH) and group 3 (G3) MB, we quantified tumour growth and infiltration and determined the morphological characteristics of the infiltrating cells. We observed basal levels of dissemination occurring in both subgroups with cells migrating either individually or collectively as clusters. Collective cerebellar tissue infiltration of SHH MB cells was further enhanced by EGF but not HGF, demonstrating differential tumour cell responses to microenvironmental cues. We found G3 cells to be hyper proliferative and observed aggressive tumour expansion even in the absence of exogenous growth factors. Our study thus provides unprecedented insights into brain tissue infiltration of SHH and G3 MB cells and reveals the cellular basis of the tumour progressing functions of EGF in SHH MB.
Local infiltration and distal dissemination of tumor cells hamper efficacy of current treatments against central nervous system (CNS) tumors and greatly influence mortality and therapy-induced longterm morbidity in survivors. A number of in vitro and ex vivo assay systems have been established to better understand the infiltration and metastatic processes, to search for molecules that specifically block tumor cell infiltration and metastatic dissemination and to pre-clinically evaluate their efficaciousness. These systems allow analytical testing of tumor cell viability and motile and invasive capabilities in simplified and well-controlled environments. However, the urgent need for novel anti-metastatic therapies has provided an incentive for the further development of not only classical in vitro methods but also of novel, physiologically more relevant assay systems including organotypic brain slice culture. In this review, using publicly available peer-reviewed primary research and review articles, we provide an overview of a selection of in vitro and ex vivo techniques widely used to study growth and dissemination of primary metastatic brain tumors. Furthermore, we discuss how our steadily increasing knowledge of tumor biology and the tumor microenvironment could be integrated to improve current research methods for metastatic brain tumors. We believe that such rationally improved methods will ultimately increase our understanding of the biology of brain tumors and facilitate the development of more efficacious anti-metastatic treatments. Local infiltration and distal dissemination of tumor cells hamper efficacy of current treatments against central nervous system (CNS) tumors and greatly influence mortality and therapy-induced long-term morbidity in survivors. A number of in vitro and ex vivo assay systems have been established to better understand the infiltration and metastatic processes, to search for molecules that specifically block tumor cell infiltration and metastatic dissemination and to pre-clinically evaluate their efficaciousness. These systems allow analytical testing of tumor cell viability and motile and invasive capabilities in simplified and well-controlled environments. However, the urgent need for novel anti-metastatic therapies has provided an incentive for the further development of not only classical in vitro methods but also of novel, physiologically more relevant assay systems including organotypic brain slice culture. In this review, using publicly available peer-reviewed primary research and review articles, we provide an overview of a selection of in vitro and ex vivo techniques widely used to study growth and dissemination of primary metastatic brain tumors. Furthermore, we discuss how our steadily increasing knowledge of tumor biology and the tumor microenvironment could be integrated to improve current research methods for metastatic brain tumors. We believe that such rationally improved methods will ultimately increase our understanding of the biology of brain tumors ...
Highlights Growth factor signaling causes sustained nuclear ERK1/2 activation. The SCR and BCR/ABL inhibitor dasatinib blocks ERK1/2 and represses cell invasion. EGF-stimulated cells may escape dasatinib inhibition of invasion through mesenchymal to amoeboid transition. Combined inhibition of SRC and Rho-kinase signaling is necessary to completely block EGF-induced invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.