A class of ultrametric Cantor sets (C, d u ) introduced recently (Raut, S and Datta, D P (2009), Fractals, 17, 45-52) is shown to enjoy some novel properties. The ultrametric d u is defined using the concept of relative infinitesimals and an inversion rule. The associated (infinitesimal) valuation which turns out to be both scale and reparametrisation invariant, is identified with the Cantor function associated with a Cantor setC where the relative infinitesimals are supposed to live in. These ultrametrics are both metrically as well as topologically inequivalent compared to the topology induced by the usual metric. Every point of the original Cantor set C is identified with the closure of the set of gaps ofC. The increments on such an ultrametric space is accomplished by following the inversion rule. As a consequence, Cantor functions are reinterpreted as locally constant functions on these extended ultrametric spaces. An interesting phenomenon, called growth of measure, is studied on such an ultrametric space. Using the reparametrisation invariance of the valuation it is shown how the scale factors of a Lebesgue measure zero Cantor set might get deformed leading to a deformed Cantor set with a positive measure. The definition of a new valuated exponent is introduced which is shown to yield the fatness exponent in the case of a positive measure (fat) Cantor set. However, the valuated exponent can also be used to distinguish Cantor sets with identical Hausdorff dimension and thickness. A class of Cantor sets with Hausdorff dimension log 3 2 and thickness 1 are constructed explicitly.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.