Ideally, a bioscaffold should mimic the characteristics of an extracellular matrix of a living organ of interest. The present study deals with the formation of composite scaffolds of collagen with gum arabic. Collagen was cross-linked with oxidized gum arabic having aldehyde groups to form a porous block. By changing the oxidation level of gum arabic, incorporation of the polysaccharides into the scaffold could be varied resulting in scaffolds with variable polysaccharide to protein content. A series of scaffolds were made by altering collagen concentration and oxidation level of gum arabic. The scaffolds were tested for their physical properties, stability, biocompatibility and ability to support the cell growth. Results implied that variable polysaccharide incorporation into the scaffolds was possible depending on the oxidation level of gum arabic which could influence the swelling behavior. The scaffolds showed non-toxic behavior towards the mesenchymal stem cells and nucleus pulposa cells using viability assay in culture conditions up to 30 days; the growth of cells was seen at all combinations of gels. Nucleus pulposa cells were able to maintain their phenotype in the GACO gels. The studies show that these scaffolds are potential candidates in applications, such as tissue engineering, and can be designed to match the requirement of different cell/tissues as per their ECM.
Degenerative diseases associated with articular cartilage pose a huge burden on health care economics. The nature of the tissue involved and the changes therein do not allow self-healing; and most of these problems are progressive. Tissue engineering offers some solutions provided we focus on the right kind of cells and the appropriate surrounding niches created for a particular tissue. The present study deals with the formation of polysaccharide rich stable scaffold of collagen after cross-linking with oxidized gum arabic. The scaffold was tested for its biocompatibility and ability to support cells. The in vitro cytotoxicity of the scaffolds toward induced pluripotent stem cells and chondrocytes was evaluated. Evaluation of expression of lineage specific markers indicates differentiation of induced pluripotent stem cells to chondrogenic lineage and maintenance of chondrocytes per se when grown in the scaffold. Animal studies were carried out to study the efficacy of the scaffold to repair the knee injuries. Cells along with the scaffold appeared to be the best filling, in repair of injured cartilage. These studies show that these scaffolds are potential candidates in applications such as tissue engineering of cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.