In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Engineering biocompatible hydrogels using functional nanoparticles has attracted considerable attention because of their uniquely appealing cooperative effects that can enable multimodality imaging and treatment with improved efficacy against serious diseases. However, the effects of high‐content nanoparticle dopants on the rheological properties of hydrogels frequently lead to an unsatisfactory therapeutic result, which is particularly notable in the design of magnetic hydrogel formulations for cancer therapy. Herein is reported a novel magnetic hydrogel functionalized by ferromagnetic vortex‐domain iron oxide (FVIOs) with optimally adaptive functions for prevention of breast cancer recurrence. The FVIOs can perfectly incorporate into the dynamic hydrogel networks with an extremely low concentration (0.6 mg mL−1), 17 times lower than that of conventional superparamagnetic iron oxide nanoparticles with sufficient heating capacity. Such magnetic hydrogels exhibit high inductive heating and remarkable rheological properties simultaneously. Moreover, the self‐healing, self‐conformal ability, controlled release of loaded doxorubicin, biodegradation, and pH‐responsiveness of the magnetic hydrogel project their efficient sustainable therapeutic ability. In vivo postoperative treatment has further demonstrated the high efficacy of FVIO‐based magnetic hydrogels, as evidenced by the significant suppression of the local tumor recurrences compared to chemotherapy or hyperthermia alone. This unique magnetic hydrogel formulation with optimally adaptive functions shows strong potential in preventing relapses of various cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.