The stock market has been a popular topic of interest in the recent past. The growth in the inflation rate has compelled people to invest in the stock and commodity markets and other areas rather than saving. Further, the ability of Deep Learning models to make predictions on the time series data has been proven time and again. Technical analysis on the stock market with the help of technical indicators has been the most common practice among traders and investors. One more aspect is the sentiment analysis -the emotion of the investors that shows the willingness to invest. A variety of techniques have been used by people around the globe involving basic Machine Learning and Neural Networks. Ranging from the basic linear regression to the advanced neural networks people have experimented with all possible techniques to predict the stock market. It's evident from recent events how news and headlines affect the stock markets and cryptocurrencies. This paper proposes an ensemble of state-of-the-art methods for predicting stock prices. Firstly sentiment analysis of the news and the headlines for the company Apple Inc, listed on the NASDAQ is performed using a version of BERT, which is a pre-trained transformer model by Google for Natural Language Processing (NLP). Afterward, a Generative Adversarial Network (GAN) predicts the stock price for Apple Inc using the technical indicators, stock indexes of various countries, some commodities, and historical prices along with the sentiment scores. Comparison is done with baseline models like -Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), vanilla GAN, and Auto-Regressive Integrated Moving Average (ARIMA) model.
The paper presents a novel learning-based framework to identify tables from scanned document images. The approach is designed as a structured labeling problem, which learns the layout of the document and labels its various entities as table header, table trailer, table cell and non-table region. We develop features which encode the foreground block characteristics and the contextual information. These features are provided to a fixed point model which learns the inter-relationship between the blocks. The fixed point model attains a contraction mapping and provides a unique label to each block. We compare the results with Condition Random Fields(CRFs). Unlike CRFs, the fixed point model captures the context information in terms of the neighbourhood layout more efficiently. Experiments on the images picked from UW-III (University of Washington) dataset, UNLV dataset and our dataset consisting of document images with multicolumn page layout, show the applicability of our algorithm in layout analysis and table detection.
Importance of monsoon rainfall cannot be ignored as it affects round the year activities ranging from agriculture to industrial. Accurate rainfall estimation and prediction is very helpful in decision making in the sectors of water resource management and agriculture. Due to dynamic nature of monsoon rainfall, it's accurate prediction becomes very challenging task. In this paper, we analyze and evaluate various deep learning approaches such as one dimensional Convolutional Neutral Network, Multi-layer Perceptron and Wide Deep Neural Networks for the prediction of summer monsoon rainfall in Indian state of Rajasthan.For our analysis purpose we have used two different types of datasets for our experiments. From IMD grided dataset, rainfall data of 484 coordinates are selected which lies within the geographical boundaries of Rajasthan. We have also collected rainfall data of 158 rain gauge station from water resources department. The comparison of various algorithms on both these data sets is presented in this paper and it is found that Deep Wide Neural Network based model outperforms the other two approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.