Glaucoma is a chronic disease often called “silent thief of sight” as it has no symptoms and if not detected at an early stage it may cause permanent blindness. Glaucoma progression precedes some structural changes in the retina which aid ophthalmologists to detect glaucoma at an early stage and stop its progression. Fundoscopy is among one of the biomedical imaging techniques to analyze the internal structure of retina. Our proposed technique provides a novel algorithm to detect glaucoma from digital fundus image using a hybrid feature set. This paper proposes a novel combination of structural (cup to disc ratio) and non-structural (texture and intensity) features to improve the accuracy of automated diagnosis of glaucoma. The proposed method introduces a suspect class in automated diagnosis in case of any conflict in decision from structural and non-structural features. The evaluation of proposed algorithm is performed using a local database containing fundus images from 100 patients. This system is designed to refer glaucoma cases from rural areas to specialists and the motivation behind introducing suspect class is to ensure high sensitivity of proposed system. The average sensitivity and specificity of proposed system are 100 and 87 % respectively.
The paper describes a dataset, entitled Retina Identification Database (RIDB). The stated dataset contains Retinal fundus images acquired using Fundus imaging camera TOPCON-TRC 50 EX. The abovementioned dataset holds a significant position in retinal recognition and identification. Retinal recognition is considered as one of the reliable biometric recognition features. Biometric recognition has become an integral part of any organization's security department. Before biometrics, the information was secured through passwords, pin keys, etc. However, the fear of decryption and hacking retained. Biometric verification includes behavioural (voice, signature, gait), morphological (Fingerprint, face, palm print, retina) and biological (Odour, saliva, DNA) features
[1]
. Amongst all of them, retina based identification is considered as the spoof proof and most accurate identification system. Since the retina is embedded inside the eye thus is least affected by the outer environment and retain in its original state. Moreover, the vascular pattern in the retina is unique and remains unchanged during the entire life span. The data presented in the paper is composed of 100 retinal images of 20 individuals (5 images were captured from each patient). The dataset is supported by research work
[2]
and
[7]
. These research papers proposed retinal recognition algorithms for biometric verification and identification. The proposed method utilized both vascular and non-vascular features for identification and yields recognition rates of 100 % and 92.5% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.