In biomedical sciences, there is demand for electronic skins with highly sensitive tactile sensors, having applications in patient monitoring, human–machine interfaces, and on‐body sensors. In clinical applications, it would be especially beneficial if the sensors would be disposable. Here, an all plant‐material‐based biodegradable capacitive tactile pressure sensor for disposable electronic skins is reported. Silver‐nanowire‐coated leaf skeletons are used as breathable and flexible electrodes while freeze‐dried rose petals are used as the dielectric layer. The leaf skeleton electrodes have a rough fractal‐like architecture, which provides good adhesion to the silver nanowires and maintains interconnections between the silver nanowires when the electrodes are bent. The electrodes display low constant resistance up to curvature of 800 m−1. The rose petal dielectric layer has a multiscale 3D cell wall microstructure, which compresses elastically when subjected to pressure. The fabricated sensor can respond to pressures ranging from 0.007 to at least 60 kPa, with a maximum sensitivity of ≈0.08 kPa−1. The signal is stable for at least 5000 pressure cycles, after an initial break‐in period. Owing to the all biomaterial constituents, the sensor is biodegradable under aqueous conditions. The sensor is successfully applied as an e‐skin in touch sensing and gesture monitoring.
Extrusion-based bioprinting with a preprint cross-linking agent and an in situ cooling stage provides a versatile method for the fabrication of 3D structures for cell culture. We added varying amounts of calcium chloride as a precross-linker into native nanofibrillated cellulose (NFC) hydrogel prior to 3D bioprinting to fabricate structurally stable multilayered constructs without the need for a separate cross-linking bath. To further enhance their stability, we bioprinted the multilayered structures onto an in situ temperature-controlled printing stage at 25, 0, and −10 °C. The extruded and subsequently freeze-dried volumetric constructs maintained their structures after being immersed into a cell culture medium. The ability to maintain the shape after immersion in cell media is an essential feature for the fabrication of stem cell-based artificial organs. We studied the viability and distribution of mouse embryonic fibroblast cells into the hydrogels using luminescence technique and confocal microscopy. Adding CaCl2 increased the stability of the multilayered nanocellulose structures, making them suitable for culturing cells inside the 3D hydrogel environment. Lower stage temperature considerably improved the structural stability of the 3D printed structures, however, had no effect on cell viability.
Nearly 35 million people worldwide live with Alzheimer’s disease (AD). The prevalence of the disease is expected to rise two-fold by 2050. With only symptomatic treatment options available, it is essential to understand the developments and existing evidence that aims to target brain pathology and dementia outcomes. This scoping systematic review aimed to collate existing evidence of CT1812 for use in patients with AD and summarize the methodologies of ongoing trials. Adhering to PRISMA Statement 2020 guidelines, PubMed/MEDLINE, Embase, Cochrane, and ClinicalTrials.gov were systematically searched through up to 15 November 2022 by applying the following keywords: CT1812, Alzheimer’s disease, dementia, and/or sigma-2 receptor. Three completed clinical trials were included along with three ongoing records of clinical trials. The three completed trials were in Phases I and II of testing. The sample size across all three trials was 135. CT1812 reached endpoints across the trials and obtained a maximum concentration in the cerebrospinal fluid with 97–98% receptor occupancy. The findings of this systematic review must be used with caution as the results, while mostly favorable so far, must be replicated in higher-powered, placebo-controlled Phase II–III trials.
OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.