Wetlands are viable sinks for nitrate and have also been identified as a source of nitrous oxide, a product of two microbially regulated processes: nitrification and denitrification. Anthropogenic expansion of nitrogen is a leading cause of the eutrophication of water bodies and may also contribute to the deterioration of the ozone layer in the stratosphere. Wetlands ameliorate the quality of water percolating through them, by retaining nutrients and sequestering carbon, and simultaneously enhancing the flora and fauna diversity of these landscapes. Among the many services these wetlands provide, they also alleviate nitrate pollution by attenuating reactive nitrogen from agricultural drainage and ensure the effective reclamation of the wastewater. The literature regarding the viability of wetlands suggests a linear relationship between the removal of nitrogen and its loading rate, thereby suggesting a potential loss of nitrogen removal capacity due to the loss of wetland area. This review discusses the nitrogen removal mechanisms in existing wetlands along with the environmental variables affecting the optimum performance and management of these wetlands, in terms of greenhouse gas retention and biodiversity. Conservation of these wetlands should be contemplated to maintain the world-wide nitrogen cycle and diminish the negative repercussions of surplus nitrogen loading.
Weeds are important components of the agroecosystems due to their role as primary producers within the farming systems, yet they are considered as major constraints to crop production. A phytosociological study was conducted to assess the composition and spatial distribution of existing weed species under the influence of various edaphic factors in the 15 wheat fields. Quadrat method was applied and different phytosociological attributes including abundance, density, and frequency were estimated by randomly laying down 10 square-shaped quadrats of size 1m2 in each wheat field. A total of 34 weed species belonging to 17 families and 30 genera were explored from 150 quadrats. Fabaceae and Asteraceae were ubiquitous plant families. Various edaphic factors such as; soil texture, electrical conductivity, soil pH, total dissolved solids, nitrogen, calcium carbonate, organic matter, NaCl, calcium, phosphorous, potassium, sodium, and zinc were determined. Pearson’s correlation was employed to correlate weeds and the potential edaphic variables. The results depicted that most of these weed pairs’ associations correlated positively. Simultaneously, the abundant weed species including Trifolium repens, Coronopus didymus, and Urtica dioica showed a positive correlation with most of the investigated ecological variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.