Abstract-Recognizing driver awareness is an important prerequisite for the design of advanced automotive safety systems. Since visual attention is constrained to a driver's field of view, knowing where a driver is looking provides useful cues about his activity and awareness of the environment. This work presents an identity-and lighting-invariant system to estimate a driver's head pose. The system is fully autonomous and operates online in daytime and nighttime driving conditions, using a monocular video camera sensitive to visible and near-infrared light. We investigate the limitations of alternative systems when operated in a moving vehicle and compare our approach, which integrates Localized Gradient Orientation histograms with support vector machines for regression. We estimate the orientation of the driver's head in two degrees-of-freedom and evaluate the accuracy of our method in a vehicular testbed equipped with a cinematic motion capture system.
Abstract-Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system Index Terms-Driver-assistance systems, driver behavior, driver intent inference, intelligent vehicles, machine vision, sparse Bayesian learning.
Abstract-Automobiles are quickly becoming more complex as new sensors and support systems are being added to improve safety and comfort. The next generation of intelligent driver assistance systems will need to utilize this wide array of sensors to fully understand the driving context and situation. Effective interaction requires these systems to examine the intentions, desires, and needs of the driver for preemptive actions which can help prepare for or avoid dangerous situations. This manuscript develops a real-time on-road prediction system able to detect a driver's intention to change lanes seconds before it occurs. In-depth analysis highlights the challenges when moving intent prediction from the laboratory to the road and provides detailed characterization of on-road performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.