The Mycobacterium tuberculosis dosR gene (Rv3133c) is part of an operon, Rv3134c-Rv3132c, and encodes a response regulator that has been shown to be upregulated by hypoxia and other in vitro stress conditions and may be important for bacterial survival within granulomatous lesions found in tuberculosis. DosR is activated in response to hypoxia and nitric oxide by DosS (Rv3132c) or DosT (Rv2027c). We compared the virulence levels of an M. tuberculosis dosR-dosS deletion mutant (⌬dosR-dosS [⌬dosR-S]), a dosR-complemented strain, and wild-type H37Rv in rabbits, guinea pigs, and mice infected by the aerosol route and in a mouse hollow-fiber model that may mimic in vivo granulomatous conditions. In the mouse and the guinea pig models, the ⌬dosR-S mutant exhibited a growth defect. In the rabbit, the ⌬dosR-S mutant did not replicate more than the wild type. In the hollow-fiber model, the mutant phenotype was not different from that of the wild-type strain. Our analyses reveal that the dosR and dosS genes are required for full virulence and that there may be differences in the patterns of attenuation of this mutant between the animal models studied.
Approximately one-third of the human population is latently infected with Mycobacterium tuberculosis, comprising a critical reservoir for disease reactivation. Despite the importance of latency in maintaining M. tuberculosis in the human population, little is known about the mycobacterial factors that regulate persistence and reactivation. Previous in vitro studies have implicated a family of five related M. tuberculosis proteins, called resuscitation promoting factors (Rpfs), in regulating mycobacterial growth. We studied the in vivo role of M. tuberculosis rpf genes in an established mouse model of M. tuberculosis persistence and reactivation. After an aerosol infection with the M. tuberculosis Erdman wild type (Erdman) or single-deletion rpf mutants to establish chronic infections in mice, reactivation was induced by administration of the nitric oxide (NO) synthase inhibitor aminoguanidine. Of the five rpf deletion mutants tested, one (⌬Rv1009) exhibited a delayed reactivation phenotype, manifested by delayed postreactivation growth kinetics and prolonged median survival times among infected animals. Immunophenotypic analysis suggested differences in pulmonary B-cell responses between Erdman-and ⌬Rv1009-infected mice at advanced stages of reactivation. Analysis of rpf gene expression in the lungs of Erdman-infected mice revealed that relative expression of four of the five rpf-like genes was diminished at late times following reactivation, when bacterial numbers had increased substantially, suggesting that rpf gene expression may be regulated in a growth phase-dependent manner. To our knowledge, ⌬Rv1009 is the first M. tuberculosis mutant to have a specific defect in reactivation without accompanying growth defects in vitro or during acute infection in vivo.Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an extraordinarily successful human pathogen. Based on surveys of tuberculin reactivity, it is estimated that up to one-third of the world's population, or 2 billion individuals, is infected with the bacillus. The vast majority of these individuals are asymptomatic latent carriers who exhibit no signs of disease and are noncontagious. However, these latently infected persons represent a critically important reservoir for disease reactivation. For immunocompetent individuals, the risk of reactivation is estimated to be 2 to 23% over their lifetimes; however, for persons coinfected with human immunodeficiency virus, the risk is a considerably higher 10% per year (13,35). It is crucial that this reservoir of latent infection be addressed if attempts to control the TB epidemic are to succeed.Although numerous host factors responsible for limiting M. tuberculosis growth have been identified (for a review, see reference 11), much less is known regarding the mycobacterial factors which contribute to persistence, and perhaps even less is known about the mycobacterial signals governing reactivation from a "persistent" or "dormant" state. The resuscitationpromoting factor (Rpf) of Micrococcus l...
The large reservoir of human latent tuberculosis (TB) contributes to the global success of the pathogen, Mycobacterium tuberculosis (Mtb). We sought to test whether aerosol infection of rabbits with Mtb H37Rv could model paucibacillary human latent TB. The lung burden of infection peaked at 5 weeks after aerosol infection followed by host containment of infection that was achieved in all rabbits. One-third of rabbits had at least one caseous granuloma with culturable bacilli at 36 weeks after infection suggesting persistent paucibacillary infection. Corticosteroid-induced immunosuppression initiated after disease containment resulted in reactivation of disease. Seventy-two percent of rabbits had culturable bacilli in the right upper lung lobe homogenates compared to none of the untreated controls. Discontinuation of dexamethasone led to predictable lymphoid recovery, with a proportion of rabbits developing multicentric large caseous granuloma. The development and severity of the immune reconstitution inflammatory syndrome (IRIS) was dependent on the antigen load at the time of immunosuppression and subsequent bacillary replication during corticosteroid-induced © 2007 Elsevier Ltd. All rights reserved. *Correspondence and requests for reprints should be addressed to: Yukari C. Manabe, MD Johns Hopkins University School of Medicine 1147B Rutland Street, Rm 1147B Baltimore, MD 21205 Phone: (410)614-6600 Fax: (410)614-9775 ymanabe@jhmi.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. HHS Public Access
The present experiment was designed to assess the effects of seed soaking with 24-epibrassinolide (EBR) on the physiology of Brassica juncea L. seedlings grown under imidacloprid (IMI) toxicity. Application of EBR increased the length of seedlings, dry weight, and pigment contents, polyphenols, total phenols, and organic acids under IMI toxicity. The expression of genes coding key enzymes of pigment, phenols, polyphenols, and organic acid biosynthetic pathways was also studied including CHLASE (chlorophyllase), PSY (phytoene synthase), CHS (chalcone synthase) and PAL (phenylalanine ammonialyase), CS (citrate synthase), SUCLG1 (succinyl Co-A ligase,), SDH (succinate dehydrogenase), FH (fumarate hydratase), MS (malate synthase). Multiple linear regression (MLR) analysis revealed that IMI application regressed negatively on seedling length, dry weight and total chlorophyll content. However, EBR seed treatment regressed positively on all the parameters studied. Moreover, interaction between IMI and EBR showed positive regression for growth parameters, content of pigments, total polyphenol, total phenol and malate, and expression of PSY and PAL. Negative interactions were noticed for the contents of fumarate, succinate and citrate, and expression of CHS and all genes studied related to organic acid metabolism. In conclusion, EBR enhanced the growth and contents of all studied metabolites by regulating the gene expression of B. juncea seedlings under IMI stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.