The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.
Objectives Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Key findings Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Summary Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness.
Silymarin, a C25 containing flavonoid from the plant Silybum marianum, has been the gold standard drug to treat liver disorders associated with alcohol consumption, acute and chronic viral hepatitis, and toxin-induced hepatic failures since its discovery in 1960. Apart from the hepatoprotective nature, which is mainly due to its antioxidant and tissue regenerative properties, Silymarin has recently been reported to be a putative neuroprotective agent against many neurologic diseases including Alzheimer's and Parkinson's diseases, and cerebral ischemia. Although the underlying neuroprotective mechanism of Silymarin is believed to be due to its capacity to inhibit oxidative stress in the brain, it also confers additional advantages by influencing pathways such as β-amyloid aggregation, inflammatory mechanisms, cellular apoptotic machinery, and estrogenic receptor mediation. In this review, we have elucidated the possible neuroprotective effects of Silymarin and the underlying molecular events, and suggested future courses of action for its acceptance as a CNS drug for the treatment of neurodegenerative diseases.
ObjectivesThe present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant (MDR) isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India.Methods76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed.ResultsOut of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump.ConclusionsThis study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.