These results suggest that a significant increase in oxidative stress may play a role in the pathogenesis of POAG and PACG. Determination of oxidative stress in aqueous humor may help in understanding the course of this disease, and oxidative damage might be a relevant target for both prevention and therapy.
a b s t r a c tAn accurate density monitoring along a stretch of a freeway, especially under congested time-variant conditions is necessary to evaluate congestion levels, understand complex traffic phenomena and develop efficient control strategies. In the first part of the paper (i) we show empirical evidence from freeway-ramp merges in Twin Cities freeway system, in favor of the capacity drop phenomenon, (ii) we provide a methodology based on phase diagrams to quantitatively estimate the level of the drop, (iii) we show that the level of the drop depends on the ratio of mainline vs. ramp flow and (iv) we investigate whether implementation of control strategies has an effect on the value of capacity drop. In the second part of the paper, we develop a methodology to estimate densities with space and time based on data from loop detectors, by integrating the capacity drop. The methodology is based on solving a flow conservation differential equation (using LWR theory) with intermediate (internal) freeway mainline boundaries, which is faster and more accurate from approaches using only external boundaries. To capture the capacity drop phenomenon into the first-order model we utilize a fundamental diagram with two values of capacity and we provide a memory-based methodology to choose the appropriate value in the numerical solution of the problem with a Godunov scheme. Results compared with real data and micro-simulation of a long freeway stretch show that this model produces more reliable and accurate results than previous theories.
Array-based profiling studies have shown implication of aberrant gene expression patterns in epileptogenesis. We have performed transcriptome analysis of hippocampal tissues resected from patients with MTLE-HS using RNAseq approach. Healthy tissues from tumour margins obtained during tumour surgeries were used as non-epileptic controls. RNA sequencing was performed using standard protocols on Illumina HiSeq 2500 platform. Differential gene expression analysis of the RNAseq data revealed 56 significantly regulated genes in MTLE patients. Gene cluster analysis identified 3 important hubs of genes mostly linked to, neuroinflammation and innate immunity, synaptic transmission and neuronal network modulation which are supportive of intrinsic severity hypothesis of pharmacoresistance. This study identified various genes like FN1 which is central in our analysis, NEUROD6, RELN, TGFβR2, NLRP1, SCRT1, CSNK2B, SCN1B, CABP1, KIF5A and antisense RNAs like AQP4-AS1 and KIRREL3-AS2 providing important insight into the understanding of the pathophysiology or genomic basis of drug refractory epilepsy due to MTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.