Granuloma formation is a key host immune response generated to confine invading pathogens and limit extensive host damage. It consists of an accumulation of host immune cells around a pathogen. This host response has been extensively studied in the context of inflammatory diseases. However, there is much less known about Th2-type granulomas generated in response to parasitic worms. Based onin vitrodata, innate immune cells within the granuloma are thought to immobilize and kill parasites but also act to repair damaged tissue. Understanding this dual function is key. The two billion people and many livestock/wild animals infected with helminths demonstrate that granulomas are not effective at clearing infection. However, the lack of high mortality highlights their importance in ensuring that parasite migration/tissue damage is restricted and wound healing is effective. In this review, we define two key cellular players (macrophages and eosinophils) and their associated molecular players involved in Th2 granuloma function. To date, the underlying mechanisms remain poorly understood, which is in part due to a lack of conclusive studies. Most have been performedin vitrorather thanin vivo, using cells that have not been obtained from granulomas. Experiments using genetically modified mouse strains and/or antibody/chemical-mediated cell depletion have also generated conflicting results depending on the model. We discuss the caveats of previous studies and the new tools available that will help fill the gaps in our knowledge and allow a better understanding of the balance between immune killing and healing.
IntroductionIntestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known.ResultsUsing a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression.DiscussionTo our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.