Bluetongue is an economically important infectious, arthropod borne viral disease of domestic and wild ruminants, caused by Bluetongue virus (BTV). Sheep are considered the most susceptible hosts, while cattle, buffalo and goats serve as reservoirs. The viral pathogenesis of BTV resulting in presence or absence of clinical disease among different hosts is not clearly understood. In the present study, transcriptome of sheep and goats peripheral blood mononuclear cells infected with BTV-16 was explored. The differentially expressed genes (DEGs) identified were found to be significantly enriched for immune system processes - NFκB signaling, MAPK signaling, Ras signaling, NOD signaling, RIG signaling, TNF signaling, TLR signaling, JAK-STAT signaling and VEGF signaling pathways. Greater numbers of DEGs were found to be involved in immune system processes in goats than in sheep. Interestingly, the DEHC (differentially expressed highly connected) gene network was found to be dense in goats than in sheep. Majority of the DEHC genes in the network were upregulated in goats but down-regulated in sheep. The network of differentially expressed immune genes with the other genes further confirmed these findings. Interferon stimulated genes - IFIT1 (ISG56), IFIT2 (ISG54) and IFIT3 (ISG60) responsible for antiviral state in the host were found to be upregulated in both the species. STAT2 was the TF commonly identified to co-regulate the DEGs, with its network showing genes that are downregulated in sheep but upregulated in goats. The genes dysregulated and the networks perturbed in the present study indicate host variability with a positive shift in immune response to BTV in goats than in sheep.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.
Both quercetin and genistein are able to down-modulate the tyrosine kinase activity of p210 as well as bring about a decrease in the content of the protein with different effects: quercetin induced apoptosis while genistein brought about both differentiation and apoptosis.
Despite major progress and knowledge related to the application of adult stem cells, finding alternative sources for bone marrow MSCs has remained a challenge in both humans and animals. In the current study, two protocols namely sequential enzymatic tissue digestion and tissue explant techniques were tried for successful establishment of MSC culture. Umbilical tissues were isolated each time of foaling from five sequential foalings of Marwari mares. Total cell yield, their growth potential and cryopreservation potential were studied. Adherent cell colonies could be established using both isolation methods. Both the cell populations yielded from different protocols performed similarly in terms of population doubling and CFU number value. Additionally, the cells proliferated vigourously and displayed a similar morphology of mesenchymal stem cells. The MSCs were plastic adherent, colonogenic and their morphology was polygonal and fibroblast like. During the proliferation, the cells exhibited density dependent inhibition; analysis of microbial contamination from bacteria, mycoplasma and fungi were negative; the population doubling time of the MSCs isolated was 34.8 h and 40.2 h in enzymatic treatment and tissue explant methods respectively, and diploid chromosome number of the cells was 64, and the diploid frequency was higher than 80%. In conclusion, this study reveals that both the techniques proved to be non-invasive, efficient, simple and quick for isolation and establishment of MSC culture of extra embryonic tissues from equines.
Purpose Juvenile-onset open-angle glaucoma (JOAG) is an uncommon type of primary open-angle glaucoma that affects individuals during childhood and early adulthood. Pathogenic variants in the myocilin gene account for varying frequencies of primary open-angle glaucoma and JOAG cases in different populations. This study has screened and identified novel and previously identified myocilin variants in a north Indian cohort of JOAG patients. Methods Eighty unrelated JOAG cases and one hundred controls have been screened for MYOC variants by PCR and DNA sequencing of exons. Results DNA sequencing revealed seventeen different variants. Out of these variants, five (p.G122A, p.R136I, p.S173T, p.K216I, and p.R200KTer*15) were novel and registered in NCBI. Pathogenic MYOC variants identified in 7.5% of JOAG cases. Conclusion Pathogenic myocilin variants account for 7.5% of cases of JOAG in our patient’s cohort. This study augments the mutation spectrum of the MYOC gene, provides population-specific information, and aids in better understanding the underlying lesions of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.