Serverless computing has emerged as an attractive deployment option for cloud applications in recent times. The unique features of this computing model include rapid auto-scaling, strong isolation, fine-grained billing options and access to a massive service ecosystem which autonomously handles resource management decisions. This model is increasingly being explored for deployments in geographically distributed edge and fog computing networks as well, due to these characteristics. Effective management of computing resources has always gained a lot of attention among researchers. The need to automate the entire process of resource provisioning, allocation, scheduling, monitoring and scaling, has resulted in the need for specialized focus on resource management under the serverless model. In this article, we identify the major aspects covering the broader concept of resource management in serverless environments and propose a taxonomy of elements which influence these aspects, encompassing characteristics of system design, workload attributes and stakeholder expectations. We take a holistic view on serverless environments deployed across edge, fog and cloud computing networks. We also analyse existing works discussing aspects of serverless resource management using this taxonomy. This article further identifies gaps in literature and highlights future research directions for improving capabilities of this computing model.
Serverless computing is gaining traction as an attractive model for the deployment of a multitude of workloads in the cloud. Designing and building effective resource management solutions for any computing environment requires extensive long term testing, experimentation and analysis of the achieved performance metrics. Utilizing real test beds and serverless platforms for such experimentation work is often times not possible due to resource, time and cost constraints. Thus, employing simulators to model these environments is key to overcoming the challenge of examining the viability of such novel ideas for resource management. Existing simulation software developed for serverless environments lack generalizibility in terms of their architecture as well as the various aspects of resource management, where most are purely focused on modeling function performance under a specific platform architecture. In contrast, we have developed a serverless simulation model with induced flexibility in its architecture as well as the key resource management aspects of function scheduling and scaling. Further, we incorporate techniques for easily deriving monitoring metrics required for evaluating any implemented solutions by users. Our work is presented as CloudSimSC, a modular extension to CloudSim which is a simulator tool extensively used for modeling cloud environments by the research community. We discuss the implemented features in our simulation tool using multiple use cases.
Serverless computing has emerged as an attractive deployment option for cloud applications in recent times. The unique features of this computing model include, rapid auto-scaling, strong isolation, fine-grained billing options and access to a massive service ecosystem which autonomously handles resource management decisions. This model is increasingly being explored for deployments in geographically distributed edge and fog computing networks as well, due to these characteristics. Effective management of computing resources has always gained a lot of attention among researchers. The need to automate the entire process of resource provisioning, allocation, scheduling, monitoring and scaling, has resulted in the need for specialized focus on resource management under the serverless model. In this article, we identify the major aspects covering the broader concept of resource management in serverless environments and propose a taxonomy of elements which influence these aspects, encompassing characteristics of system design, workload attributes and stakeholder expectations. We take a holistic view on serverless environments deployed across edge, fog and cloud computing networks. We also analyse existing works discussing aspects of serverless resource management using this taxonomy. This article further identifies gaps in literature and highlights future research directions for improving capabilities of this computing model. CCS Concepts: • General and reference → Surveys and overviews; • Computer systems organization → Distributed architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.