The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.