Voice recognition plays a key function in spoken communication that facilitates identifying the emotions of a person that reflects within the voice. Gender classification through speech is a popular Human Computer Interaction (HCI) method on account that determining gender through computer is hard. This led to the development of a model for "Voice feature extraction for Emotion and Gender Recognition". The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have specific vocal traits because of their acoustical and perceptual variations along with a variety of emotions which bring their own specific perceptions. In order to explore this area, feature extraction requires pre-processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre-processing using Voice Activity Detector(VAD), feature extraction using Mel-Frequency Cepstral Coefficient(MFCC), feature reduction by Principal Component Analysis(PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in healthcare sector, virtual assistants, security purposes and other fields related to Human Machine Interaction domain.
Voice recognition plays a key role in spoken communication that helps to identify the emotions of a person that reflects in the voice. Gender classification through speech is a widely used Human Computer Interaction (HCI) as it is not easy to identify gender by computer. This led to the development of a model for “Voice feature extraction for Emotion and Gender Recognition”. The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have different voice characteristics due to their acoustical and perceptual differences along with a variety of emotions which convey their own unique perceptions. In order to explore this area, feature extraction requires pre- processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre- processing using Voice Activity Detector (VAD), feature extraction using Mel-Frequency Cepstral Coefficient (MFCC), feature reduction by Principal Component Analysis (PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in the healthcare sector, virtual assistants, security purposes and other fields related to the Human Machine Interaction domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.