The aim of this work focused on the preparation of Mn2+ doped on TiO2 by impregnation method for the photocatalytic degradation of Reactive Red-3 dye aqueous solution. Characterizations of the photocatalyst were carried out by using XRD, BET, SEM and UV-DRs. The extended photocatalysis were studied as functions of %wt Mn2+ (0%, 0.05%, 0.1%), pollutant concentration, solution pH and catalyst loading using Response Surface Method (RSM) based on Box-Behnken design. Based on results found that the anatase phase was not affected by Mn2+ added on the surface of TiO2 whereas the rutile phase increased with increasing Mn2+ contents. The band gap energy of Mn2+ doped on TiO2 did not show in red shift but it exhibited higher absorbance than neat TiO2 in visible region. The surface area was insignificantly changed for Mn2+ doped on TiO2. The degradation results were investigated that pollutant concentration, pH of solution and loading of Mn2+ on TiO2 were significant parameters effecting on photocatalytic degradation of Reactive Red-3 dye. The existence of Mn2+ on TiO2 decreased the activity of rectaion. The optimum condition was 0%wt of Mn2+, 10 ppm of Reactive Red-3, pH 4 and 4.0 g/L of catalyst loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.