SUMMARYExtracellular ATP regulates higher plant growth and adaptation. The signalling events may be unique to higher plants, as they lack animal purinoceptor homologues. Although it is known that plant cytosolic free Ca 2+ can be elevated by extracellular ATP, the mechanism is unknown. Here, we have studied roots of Arabidopsis thaliana to determine the events that lead to the transcriptional stress response evoked by extracellular ATP. Root cell protoplasts were used to demonstrate that signalling to elevate cytosolic free Ca 2+ is determined by ATP perception at the plasma membrane, and not at the cell wall. Imaging revealed that extracellular ATP causes the production of reactive oxygen species in intact roots, with the plasma membrane NADPH oxidase AtRBOHC being the major contributor. This resulted in the stimulation of plasma membrane Ca
2+-permeable channels (determined using patch-clamp electrophysiology), which contribute to the elevation of cytosolic free Ca 2+ . Disruption of this pathway in the AtrbohC mutant impaired the extracellular ATP-induced increase in reactive oxygen species (ROS), the activation of Ca 2+ channels, and the transcription of the MAP kinase3 gene that is known to be involved in stress responses. This study shows that higher plants, although bereft of purinoceptor homologues, could have evolved a distinct mechanism to transduce the ATP signal at the plasma membrane.
Plant annexins are ubiquitous, soluble proteins capable of Ca(2+)-dependent and Ca(2+)-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.
Highlights d The Striga genome reflects a three-phase model of parasitic plant genome evolution d A family of strigolactone receptors has undergone a striking expansion in Striga d Genes in lateral root development are coordinately induced in a parasitic organ d Host genes and retrotransposons are horizontally transferred into Striga
SummaryAnnexins are multifunctional lipid-binding proteins. Plant annexins are expressed throughout the life cycle and are under environmental control. Their association or insertion into membranes may be governed by a range of local conditions (Ca 2+ , pH, voltage or lipid identity) and nonclassical sorting motifs. Protein functions include exocytosis, actin binding, peroxidase activity, callose synthase regulation and ion transport. As such, annexins appear capable of linking Ca 2+ , redox and lipid signalling to coordinate development with responses to the biotic and abiotic environment. Significant advances in plant annexin research have been made in the past 2 yr. Here, we review the basis of annexin multifunctionality and suggest how these proteins may operate in the life and death of a plant cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.