In this paper, we present a purpose-built data management system, MLdp, for all machine learning (ML) datasets. ML applications pose some unique requirements different from common conventional data processing applications, including but not limited to: data lineage and provenance tracking, rich data semantics and formats, integration with diverse ML frameworks and access patterns, trial-and-error driven data exploration and evolution, rapid experimentation, reproducibility of the model training, strict compliance and privacy regulations, etc. Current ML systems/services, often named MLaaS, to-date focus on the ML algorithms, and offer no integrated data management system. Instead, they require users to bring their own data and to manage their own data on either blob storage or on file systems. The burdens of data management tasks, such as versioning and access control, fall onto the users, and not all compliance features, such as terms of use, privacy measures, and auditing, are available. MLdp offers a minimalist and flexible data model for all varieties of data, strong version management to guarantee re-producibility of ML experiments, and integration with major ML frameworks. MLdp also maintains the data provenance to help users track lineage and dependencies among data versions and models in their ML pipelines. In addition to table-stake features, such as security, availability and scalability, MLdp's internal design choices are strongly influenced by the goal to support rapid ML experiment iterations, which
Daily engagement in life experiences is increasingly interwoven with mobile device use. Screen capture at the scale of seconds is being used in behavioral studies and to implement "just-in-time" health interventions. The increasing psychological breadth of digital information will continue to make the actual screens that people view a preferred if not required source of data about life experiences. Effective and efficient Information Extraction and Retrieval from digital screenshots is a crucial prerequisite to successful use of screen data. In this paper, we present the experimental workflow we exploited to: (i) pre-process a unique collection of screen captures, (ii) extract unstructured text embedded in the images, (iii) organize image text and metadata based on a structured schema, (iv) index the resulting document collection, and (v) allow for Image Retrieval through a dedicated vertical search engine application. The adopted procedure integrates different open source libraries for traditional image processing, Optical Character Recognition (OCR), and Image Retrieval. Our aim is to assess whether and how state-of-the-art methodologies can be applied to this novel data set. We show how combining OpenCV-based pre-processing modules with a Long short-term memory (LSTM) based release of Tesseract OCR, without ad hoc training, led to a 74% character-level accuracy of the extracted text. Further, we used the processed repository as baseline for a dedicated Image Retrieval system, for the immediate use and application for behavioral and prevention scientists. We discuss issues of Text Information Extraction and Retrieval that are particular to the screenshot image case and suggest important future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.