Mammography is the most widely used tool for the early detection of breast cancer. Computerbased algorithms can be developed to improve diagnostic information in mammograms and assist the radiologist to improve diagnostic accuracy. In this paper, we propose a novel computer aided technique to classify abnormalities in mammograms using fusion of local and global features. The objective of this work is to test the effectiveness of combined use of local and global features in detecting abnormalities in mammograms. Local features used in the system are Chebyshev moments and Haralick's gray level co-occurrence matrix based texture features. Global features used are Laws texture energy measures, Gabor based texture energy measures and fractal dimension. All types of abnormalities namely clusters of microcalcifications, circumscribed masses, spiculated masses, architectural distortions and ill-defined masses are considered. A support vector machine classifier is designed to classify the samples into abnormal and normal classes. It is observed that combined use of local and global features has improved classification accuracy from 88.75% to 93.17%.
Printed Circuit Boards ("PCB") are the foundation for the functioning of any electronic device, and therefore are an essential component for various industries such as automobile, communication, computation, etc. However, one of the challenges faced by the PCB manufacturers in the process of manufacturing of the PCBs is the faulty placement of its components including missing components. In the present scenario the infrastructure required to ensure adequate quality of the PCB requires a lot of time and effort. The authors present a novel solution for detecting missing components and classifying them in a resourceful manner. The presented algorithm focuses on pixel theory and object detection, which has been used in combination to optimize the results from the given dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.