Ropinirole, an antiparkinsoism dopamine agonist, is used to treat Restless Legs Syndrome. However, orally it undergoes degradation in gastrointestinal tract and extensive first pass metabolism, resulting in its poor and variable bioavailability of the commercially available oral tablets. In the present investigation, soft nanocarriers, viz., microemulsion of ropinirole with the globule size of 160 2 ± 3 87 nm and zeta potential of −4.24 mV was explored for transdermal application. Transdermal drug delivery offers benefits such as sustained therapeutic plasma levels of drugs, avoidance of first pass effect, and improved patient compliance. In comparison to the hydrogel, the developed microemulsion enhanced the drug permeation across the rat skin and porcine ear skin by 3.5 and 2 folds, respectively. Further, the developed microemulsion antagonized the catalepsy in the haloperidol-induced catalepsy rat model by 10 folds as compared to the marketed tablets. Additionally, in rotenone induced Parkinsonism rat model, the microemulsion showed improvement in the motor function by 76% whereas the oral tablet showed only 5% restoration of the normal function. Besides this, the developed formulation successfully restored the catalase and superoxide dismutase levels which were significantly reduced by rotenone administration. Overall, the in vivo studies suggested the potential of the developed transdermal microemulsion of Ropinirole as a viable alternative to marketed formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.