IntroductionMultisystem Inflammatory Syndrome in children (MIS-C) is a serious inflammatory sequela of SARS-CoV2 infection. The pathogenesis of MIS-C is vague and matrix metalloproteinases (MMPs) may have an important role. Matrix metalloproteinases (MMPs) are known drivers of lung pathology in many diseases.MethodsTo elucidate the role of MMPs in pathogenesis of pediatric COVID-19, we examined their plasma levels in MIS-C and acute COVID-19 children and compared them to convalescent COVID-19 and children with other common tropical diseases (with overlapping clinical manifestations).ResultsChildren with MIS-C had elevated levels of MMPs (P < 0.005 statistically significant) in comparison to acute COVID-19, other tropical diseases (Dengue fever, typhoid fever, and scrub typhus fever) and convalescent COVID-19 children. PCA and ROC analysis (sensitivity 84–100% and specificity 80–100%) showed that MMP-8, 12, 13 could help distinguish MIS-C from acute COVID-19 and other tropical diseases with high sensitivity and specificity. Among MIS-C children, elevated levels of MMPs were seen in children requiring intensive care unit admission as compared to children not needing intensive care. Similar findings were noted when children with severe/moderate COVID-19 were compared to children with mild COVID-19. Finally, MMP levels exhibited significant correlation with laboratory parameters, including lymphocyte counts, CRP, D-dimer, Ferritin and Sodium levels.DiscussionOur findings suggest that MMPs play a pivotal role in the pathogenesis of MIS-C and COVID-19 in children and may help distinguish MIS-C from other conditions with overlapping clinical presentation.
ImportanceMultisystem inflammatory syndrome in children (MIS-C) is a severe and unrestrained inflammatory response with multiorgan involvement, which occurs within a few weeks following the resolution of acute SARS-CoV-2 infection. The complement system is a vital part of the innate immune system and plays a role in COVID-19 pathogenesis.ObjectiveTo examine and compare the levels of complement components and regulators along with complement activation products in the different clinical spectrum of children with SARS-CoV-2 and a control group.Design, Setting, and ParticipantsThis cross-sectional study analyzed children with MIS-C admitted to a single hospital in India from June through September 2020. Eligible participants were children who were hospitalized of either sex, aged 1 to 18 years. Data were analyzed August 2022.MeasuresLevels of complement components and regulators along with complement activation products in all the groups of children. Mann-Whitney U test and Kruskal-Wallis analysis were used to compare the complement component levels, and Spearman rank correlation analysis was used to describe the association between complement components and laboratory and biochemical parameters.ResultsA total 145 children were included (median age, 5 years [range, 1 month-17 years); 84 [58%] male): 44 children with MIS-C, 33 with acute COVID-19 (reverse transcriptase–polymerase chain reaction [RT-PCR] positive), 47 with convalescent COVID-19 (immunoglobulin G–positive non-MIS-C) and 21 children for a control group (both serology and RT-PCR negative). Children with MIS-C and COVID-19 had higher levels of C1q (geometric mean [SD]: MIS-C, 61.5 [18.5] ng/mL; acute COVID-19, 56.9 [18.6] ng/mL; controls, 24.1 [3.3] ng/mL), C2 (MIS-C, 605.8 [219.7] ng/mL; acute COVID-19, 606.4 [167.7] ng/mL; controls, 255.9 [73.3] ng/mL), C3 (MIS-C, 318.2 [70.7] ng/mL; acute COVID-19, 237.7 [61.8] ng/mL; controls, 123.4 [15.7] ng/mL), C4b (MIS-C, 712.4 ng/mL; acute COVID-19, 640.7 ng/mL; controls, 351.5 ng/mL), C5 (MIS-C, 1487 ng/mL; acute COVID-19, 1364 ng/mL; controls, 561.9 ng/mL), C5a, (MIS-C, 2614.0 [336.2] ng/mL; acute COVID-19, 1826.0 [541.0] ng/mL; controls, 462.5 [132.4] ng/mL), C3b/iC3b (MIS-C, 3971.0 [635.1] ng/mL; acute COVID-19, 3702.0 [653.9] ng/mL; controls, 2039.0 [344.5] ng/mL), and factor B (MIS-C, 47.6 [7.8] ng/mL; acute COVID-19, 44.6 [6.3] ng/mL; controls, 27.5 [5.0] ng/mL), factor D (MIS-C, 44.0 [17.2] ng/mL; acute COVID-19, 33.8 [18.4] ng/mL; controls, 21.3 [6.1] ng/mL), and factor H (MIS-C, 53.1 [4.0] ng/mL; acute COVID-19, 50.8 [5.7] ng/mL; controls, 43.6 [3.8] ng/mL) in comparison with convalescent and control children. In addition, children with MIS-C had significantly elevated levels of C3 (318.2 [70.7] ng/mL vs 237.7 [61.8] ng/mL), C5a (2614 [336.2] ng/mL vs 1826 [541.0] ng/mL), and mannose-binding lectin (79.4 [12.4] ng/mL vs 69.6 [14.7] ng/mL) in comparison to children with acute COVID-19. Levels of some of these analytes at admission (ie, pretreatment) were more elevated in children with MIS-C who needed pediatric intensive care unit (PICU) support as compared with those who did not require PICU support, and in children with COVID-19 who developed moderate to severe disease compared with those who developed mild disease. Overall, MIS-C and acute COVID-19 were associated with the hyperactivation of complement components and complement regulators.Conclusions and RelevanceIn this cross-sectional study, the complement system was associated with the pathogenesis of MIS-C and COVID-19 in children; complement inhibition could be further explored as a potential treatment option.
Background The positive predictive value of Tuberculin Skin Test and current generation Interferon Gamma Release Assays are very low leading to high numbers needed to treat. Therefore, it is critical to identify new biomarkers with high predictive accuracy to identify individuals bearing high risk of progression to active tuberculosis. Methods We used stored QuantiFERON supernatants from 14 household contacts of index TB patients who developed incident active TB during a two-year follow-up and 20 age and sex-matched non-progressors. The supernatants were tested for an expanded panel of 45 cytokines, chemokines and growth factors using the Luminex Multiplex Array kit. Results We found significant differences in the levels of TB-antigen induced production of several analytes between progressors and non-progressors. Dominance analysis identified 15 key predictive biomarkers based on relative percentage importance. Principal component analysis revealed that these biomarkers could robustly distinguish between the two groups. Receiver operating characteristic analysis identified IP-10, CCL19, IFN-γ, IL-1ra, CCL3 and GM-CSF as the most promising predictive markers, with AUC ≥90. IP-10/CCL19 ratio exhibited maximum sensitivity and specificity (100%) in predicting progression. Through Classification and Regression Tree analysis, a cut-off of 0.24 for IP-10/CCL19 ratio was found to be ideal for predicting short-term risk of progression to TB disease with a positive predictive value of 100 (95% CI 85.8-100). Conclusion The biomarkers identified in this study will pave way for the development of a more accurate test that can identify individuals at high risk for immediate progression to TB disease for targeted intervention.
Background The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), accountable for Coronavirus disease 2019 (COVID-19), may cause hyperglycemia and additional systemic complexity in metabolic parameters. It is unsure even if the virus itself causes type 1 or type 2 diabetes mellitus (T1DM or T2DM). Furthermore, it is still unclear whether even recuperating COVID-19 individuals have an increased chance to develop new-onset diabetes. Methods We wanted to determine the impact of COVID-19 on the levels of adipokines, pancreatic hormones, incretins and cytokines in acute COVID-19, convalescent COVID-19 and control children through an observational study. We performed a multiplex immune assay analysis and compared the plasma levels of adipocytokines, pancreatic hormones, incretins and cytokines of children presenting with acute COVID-19 infection and convalescent COVID-19. Results Acute COVID-19 children had significantly elevated levels of adipsin, leptin, insulin, C-peptide, glucagon and ghrelin in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had elevated levels of adipsin, leptin, insulin, C-peptide, glucagon, ghrelin and Glucagon-like peptide-1 (GLP-1) in comparison to control children. On the other hand, acute COVID-19 children had significantly decreased levels of adiponectin and Gastric Inhibitory Peptide (GIP) in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had decreased levels of adiponectin and GIP in comparison to control children. Acute COVID-19 children had significantly elevated levels of cytokines, (Interferon (IFN)) IFNγ, Interleukins (IL)-2, TNFα, IL-1α, IL-1β, IFNα, IFNβ, IL-6, IL-12, IL-17A and Granulocyte-Colony Stimulating Factors (G-CSF) in comparison to convalescent COVID-19 and controls. Convalescent COVID-19 children had elevated levels of IFNγ, IL-2, TNFα, IL-1α, IL-1β, IFNα, IFNβ, IL-6, IL-12, IL-17A and G-CSF in comparison to control children. Additionally, Principal component Analysis (PCA) analysis distinguishes acute COVID-19 from convalescent COVID-19 and controls. The adipokines exhibited a significant correlation with the levels of pro-inflammatory cytokines. Conclusion Children with acute COVID-19 show significant glycometabolic impairment and exaggerated cytokine responses, which is different from convalescent COVID-19 infection and controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.