Alpha-adrenergic amines exert concentration-dependent actions on the automaticity of cardiac Purkinje fibers (Posner, P., E. L. Farrar, and C. R. Lambert. 1976. Am. J. Physiol. 231:1415-1420; Rosen, M. R., A. J. Hordof, J. P. Ilvento, and P. Danilo, Jr. 1977. Circ. Res. 40:390-400; Rosen, M. R., R. M. Weiss, and P. Danilo, Jr. 1984. J. Pharmacol. Exp. Ther. 231:1415-1420). At high concentrations they induce a largely beta adrenergic increase in the spontaneous firing rate of adult canine Purkinje fibers, whereas at concentrations less than 10(-6) M, their effect is mediated through alpha-adrenergic receptors and is seen predominantly as a decrease in the fibers' spontaneous firing rate. The mechanism for this decrease in spontaneous firing rate remains unexplained. We report here that phenylephrine (10(-7) M) increases the activity of the Na/K pump and decreases background gK in Purkinje myocytes. Both effects appear to be alpha-1 adrenergic and, in addition, are abolished on pretreatment with pertussis toxin. These results suggest that like the atrial muscarinic receptor (Pffafinger, P. J., J. M. Martin, D. D. Hunter, N. M. Nathanson, and B. Hille. 1985. Nature [Lond.]. 317:536-538; Breitwieser, G. E., and G. Szabo. 1985. Nature [Lond.]. 317:538-540) the Purkinje fiber alpha-1 receptor is coupled to background gK via a GTP-regulatory protein. Further, they suggest that the phenylephrine-induced decrease in spontaneous firing rate is due to stimulation of the Na/K pump via a novel coupling of the Na/K pump to a pertussis toxin-sensitive GTP regulatory protein.
The current-voltage (I-V) relation of the background current, IK1, was studied in isolated canine cardiac Purkinje myocytes using the whole-cell, patch-clamp technique. Since Ba2+ and Cs+ block IK1, these cations were used to separate the I-V relation of IK1 from that of the whole cell. The I-V relation of IK1 was measured as the difference between the I-V relations of the cell in normal Tyrode (control solution) and in the presence of either Ba2+ (1 mM) or Cs+ (10 mM). Our results indicate that IK1 is an inwardly rectifying K+ current whose conductance depends on extracellular potassium concentration. In different [K+]0's the I-V relations of IK1 exhibit crossover. In addition the I-V relation of IK1 contains a region of negative slope (even when that of the whole cell does not). We also examined the relationship between the resting potential of the myocyte, Vm, and [K+]0 and found that it exhibits the characteristic anomalous behavior first reported in Purkinje strands (Weidmann, S., 1956, Elektrophysiologie der Herzmuskelfaser, Med. Verlag H. Huber), where lowering [K+]0 below 4 mM results in a depolarization.
alpha 1-Adrenergic stimulation of the neonatal heart may induce either an increase or a decrease in ventricular automaticity, with the latter response predominating as age increases. We used isolated tissues from the hearts of neonatal and adult dogs and rats, as well as rat myocytes in tissue culture alone or in coculture with sympathetic nerves, to study the role of sympathetic innervation in modulating the alpha-adrenergic response. In the absence of sympathetic innervation, alpha-adrenergic stimulation uniformly increases automaticity. As the myocyte is innervated, an increased quantity of a GTP regulatory protein is detectable. That this protein is an essential transducer of alpha-adrenergic inhibition of automaticity is evidenced by the conversion of the alpha response from excitatory to inhibitory as the protein develops. ADP-ribosylation of the protein with pertussis toxin causes the alpha response to revert to excitation in both adult canine hearts and innervated myocytes in tissue culture. Hence, we have evidence for sympathetic modulation of cardiac rhythm via a regulatory protein whose function depends on normal neuronal development. Abnormal development of innervation may predispose to arrhythmogenesis via persistence of a primitive response to alpha stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.