Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
, "Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering" (2005). Papers in Biotechnology. 29.
Nanofibrous scaffolds are very promising physical guidance substrates for regenerating nerves to traverse larger nerve gaps. In this study, we have attempted to develop 2D random and 3D longitudinally oriented nanofibers of poly(lactide-co-glycolide) (PLGA) by the modified electrospinning process and characterized the surface morphology, mechanical properties, porosity, degradation and wettability. The orientation of aligned fibers was optimized by varying the speed of the rotating mandrel in the electrospinning process. The mean diameter of random PLGA nanofibers was 197 ± 72 nm, whereas that of the aligned PLGA fiber was 187 ± 121 nm. The pore size of aligned PLGA nanofibers (3.5 ± 1.1 µm) was significantly lower than their respective random nanofibers (8.0 ± 2.0 µm) (p < 0.05). However, the percentage porosity of both scaffolds was comparable (p > 0.05). The mass loss percentage and molecular weight loss percentage due to degradation was higher in random PLGA fibers when compared to aligned PLGA after 5 weeks (p < 0.05). The tensile strength and Young's modulus of random PLGA fibers were significantly higher than those of the aligned PLGA nanofibers (p < 0.05). Both random and longitudinally aligned scaffolds were used for the in vitro culture of Schwann cells. Morphology and cell proliferation results demonstrated that the aligned fibers assist the direction of Schwann cells and a better proliferation rate than their random fibers. The results confirmed that aligned nanofibers have better deformability, slow degradation, comparable porosity and orientation cues than random nanofibers. Hence the longitudinally aligned nanofibers may be ideal scaffolds for nerve regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.