We compute the F-pure threshold of the affine cone over a Calabi-Yau hypersurface, and relate it to the order of vanishing of the Hasse invariant on the versal deformation space of the hypersurface.
We prove that the F-signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of the Hilbert-Kunz multiplicities of two monomial ideals, and then using Watanabe's result that these Hilbert-Kunz multiplicities are rational numbers.
This paper discusses the problem of whether it is possible to annihilate elements of local cohomology modules by elements of arbitrarily small order under a fixed valuation. We first discuss the general problem and its relationship to the Direct Summand Conjecture, and next present two concrete examples where annihilators with small order are shown to exist. We then prove a more general theorem, where the existence of such annihilators is established in some cases using results on abelian varieties and the Albanese map.
We study a question raised by Eisenbud, Mustat ¸ǎ, and Stillman regarding the injectivity of natural maps from Ext modules to local cohomology modules. We obtain some positive answers to this question which extend earlier results of Lyubeznik. In the process, we also prove a vanishing theorem for local cohomology modules which connects theorems previously known in the case of positive characteristic and in the case of monomial ideals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.